Viability of Dyeing of Natural and Synthetic Fibers with Nanopigments in Supercritical CO$_2$

Bàrbara Micó, Verónica Marchante, Francisco Martínez-Verdú, Eduardo Gilabert
ÍNDEX

- Introduction
 - Supercritical CO₂
 - Dyeing in supercritical CO₂
 - Nanopigments and nanoclays
- Objectives
- State of the art
 - Colorant selection
 - Fibres
 - Process variables
- Challenges
- Solutions / Future perspectives
- Advantages of using Nanopigments
- References / Acknowledgements
INTRODUCTION

- **Supercritical CO\(_2\):** Solvent

- Properties
 - Low cost
 - Non-Toxic
 - Density: liquid
 - Viscosity: Gas
 - Recycling up to 90%
 - Inert
 - Non-explosive
 - Low critical point
 - Pressure: 73.858 ± 0.005 bar
 - Temperature: 31.05 ± 0.05 °C
DYEING IN SUPERCRITICAL CARBON DIOXIDE

- ADVANTAGES
 - No waste water (problem in textile industry)
 - No require additives
 - No final drying
 - Recycling
 - Solvent
 - Colorants
 - Environmental friendly

- DRAWBACKS
 - Investment
 - Solve colorants
 - Time of process
NANOPIGMENTS

- NANONATERIALS: since 90’s
 - Hybrid materials consisting of organic dyes and layered silicate nanoparticles
 - Nanoclay: particle size < 20nm
 - Ionic-exchange reaction: Colorant + Nanoclay (H⁺)
 - Nanoclays: Smectite group
 - Montmollonite: laminar
 - Sepiolite: acicular
Scheme of nanopigments’ synthesis at laboratory

Stage 1
- Nanoclay
- Sieving
- Dispersion
- H$_2$O deionized

Stage 2
- Colorant solution
- Ionic Exchange
- Washing and Filtering
- Drying

APPLICATIONS:
- Coloration of Plastics
- Printing Inks
- Functional materials
Schematic representation of clay sheet, dye molecule (methylene blue) and blue Nanopigment.
OBJECTIVES: PROJECT AITEX-AINIA-UA

1. STATE OF THE ART

2. SELECTION / MATERIAL DEVELOPMENT
 - 2.1. POLYMERS
 - 2.2. COLORANTS
 - 2.3. ANTIBACTERIAL AGENTS

3. DISSOLUTION OF MATERIALS IN SC CO₂

4. POLYMER IMPREGNATION IN SC-CO₂

5. CHARACTERIZE TREATED MATERIAL WITH SC-CO₂

6. REENGINEERING

7. VIABILITY / ECONOMIC

8. RESULTS AND DEFUSION
STATE OF THE ART

- Colorants that can be solved in scCO₂
- Textile dyes classification:
 - Directs
 - Reactive
 - Acids/Basics
 - Sulphur
 - Vat
 - Mordant
 - Disperse
 - Pigments

DISSOLVED IN SC-CO₂

NOT DISSOLVED IN SC-CO₂
COLORANT SELECTION

DISPERSE DYES

- Azoic $[-\text{N}=\text{N}]-$
 - The most important disperse dyes
 - Cheaper and easy manufacture
 - From non polar fibers

- Anthraquinone
 - It’s more soluble [1]
 - More expensive

MORE SOLUBILITY
COLORANT: SELECTION

REACTIVE DISPERSE DYES [2]

- (mono-di-)chlorotriazine
 - Dyeing of natural fibers
 - Protein or synthetic fibers
- (mono-di-)fluorotriazine
 - Dyeing cotton
 - Using different co-solvents
 - Methanol improves the solubility

REACTIVE GROUPS CHANGE THE COLORANT’S SOLUBILITY
COLORANT SELECTION

REACTIVE DYES

- Vinylsulphone: Improve fixations [3]
- Are suitable for dyeing textiles containing polyester, nylon, silk or wool.
- Fixations between 70 – 90%

Solubility: [4]
- Decrease: OH, NH₂, COOR’
- Increase: HX NO₂
[X=F, Cl, Br, ..]
Dyeing steps

- Transport of dye to the fibres: **SOLUBILITY**
 - Works: different cosolvents
 - Acetonitrile
 - Methanol
 - Water
 - Acetone
- Reaction of the dye with the textile: **AFFINITY**
- **DIFFUSION** of dye into the fibres: \(D \) coefficient.

PROCESS VARIABLES

- IMPROVE THE RESULTS
- REACTIVE GROUPS
- \(D \) coefficient
- PARTICLE SIZE
EQUIPMENTS

- Gas cylinder
- Carbon dioxide pump
- Pump head cooler
- Stop valves
- Pressure gauge
- Back pressure regulator
- Cosolvent reservoir
- Cosolvent pump
- Dyeing vessel
- Stirrer
- Heating jacket
- Dyeing beam
EQUIPMENT: AINIA PILOT PLANT

Planta FSC500

Planta SFF-58_60

Planta PFS20
FIBRES

- PET the most studied
- Changes in the structure of polymers:
 - Plastics: $>\text{Tg}$
 - Size stability
- Natural fibres [5]
 - Pre-treatments: Hydrophobic and nonpolar
 - Polyurethane
 - DMDHEU
 - Solvents: Alcohol and water
We only can use non polar colorants in scCO$_2$:

These kind of colorant haven’t affinity of natural fibres.

There are a lot of variables in the process: Solubility can change with:

- Colorants (Reactive group, Particle size…)
- Pressure
- Temperature
- Substrates: Natural or synthetic fibers

The time of process is too long: 4h
SOLUTIONS / FUTURE PERSPECTIVES

- Pre-treated fibres:
 - PET: with UV, N,N-dimethylacrylamide
 - CO: DMDHEU, PUR, acetone...

- Changes in structure of colorants
 - [6] Novel reactive disperse dyes has been synthesized.

- Control the solubility and dye process
 - Equations to predict the solubility

- NANOPIGMENTS
ADVANTAGES OF NANOPIGMENTS

- Nanopigments are a viable and environmentally-friendly alternative to traditional pigments because of their easy synthesis and conventional processing.
- Increase the color gamut:
 - We can use a lot of conventional organic dyes.
- Increase the resistance of colors: UV, O₂, Temperature
- Improve substrate properties: stability, strength, permeability…
REFERENCES

Acknowledgements

This work is supported by Ministry of Science and Innovation (MICINN) with the project “Aplicación de la tecnología de fluidos supercríticos en la impregnación de sustratos poliméricos” ref.: CIT-20000-2009-2.