Lecture 7: Synchronous machines

Instructor:
Dr. Gleb V. Tcheslavski

Contact:
gleb@ee.lamar.edu

Office Hours:
TBD; Room 2030

Class web site:
http://ee.lamar.edu/gleb/
Index.htm
Construction of synchronous machines

Synchronous machines are AC machines that have a field circuit supplied by an external DC source.

In a synchronous generator, a DC current is applied to the rotor winding producing a rotor magnetic field. The rotor is then turned by external means producing a rotating magnetic field, which induces a 3-phase voltage within the stator winding.

In a synchronous motor, a 3-phase set of stator currents produces a rotating magnetic field causing the rotor magnetic field to align with it. The rotor magnetic field is produced by a DC current applied to the rotor winding.

Field windings are the windings producing the main magnetic field (rotor windings for synchronous machines); armature windings are the windings where the main voltage is induced (stator windings for synchronous machines).
Construction of synchronous machines

The rotor of a synchronous machine is a large electromagnet. The magnetic poles can be either salient (sticking out of rotor surface) or non-salient construction.

Non-salient-pole rotor: usually two- and four-pole rotors.
Salient-pole rotor: four and more poles.

Rotors are made laminated to reduce eddy current losses.
Construction of synchronous machines

A synchronous rotor with 8 salient poles

Salient pole with field windings

Salient pole without field windings – observe laminations
Construction of synchronous machines

Two common approaches are used to supply a DC current to the field circuits on the rotating rotor:

1. Supply the DC power from an external DC source to the rotor by means of slip rings and brushes;

2. Supply the DC power from a special DC power source mounted directly on the shaft of the machine.

Slip rings are metal rings completely encircling the shaft of a machine but insulated from it. One end of a DC rotor winding is connected to each of the two slip rings on the machine’s shaft. Graphite-like carbon brushes connected to DC terminals ride on each slip ring supplying DC voltage to field windings regardless the position or speed of the rotor.
Construction of synchronous machines

Slip rings
Brush
Construction of synchronous machines

Slip rings and brushes have certain disadvantages: increased friction and wear (therefore, needed maintenance), brush voltage drop can introduce significant power losses. Still this approach is used in most small synchronous machines.

On large generators and motors, brushless exciters are used. A brushless exciter is a small AC generator whose field circuits are mounted on the stator and armature circuits are mounted on the rotor shaft. The exciter generator’s 3-phase output is rectified to DC by a 3-phase rectifier (mounted on the shaft) and fed into the main DC field circuit. It is possible to adjust the field current on the main machine by controlling the small DC field current of the exciter generator (located on the stator).

Since no mechanical contact occurs between the rotor and the stator, exciters of this type require much less maintenance.
Construction of synchronous machines

A brushless exciter: a low 3-phase current is rectified and used to supply the field circuit of the exciter (located on the stator). The output of the exciter’s armature circuit (on the rotor) is rectified and used as the field current of the main machine.
Construction of synchronous machines

To make the excitation of a generator completely independent of any external power source, a small pilot exciter is often added to the circuit. The pilot exciter is an AC generator with a permanent magnet mounted on the rotor shaft and a 3-phase winding on the stator producing the power for the field circuit of the exciter.
Construction of synchronous machines

A rotor of large synchronous machine with a brushless exciter mounted on the same shaft.

Many synchronous generators having brushless exciters also include slip rings and brushes to provide emergency source of the field DC current.
Construction of synchronous machines

A large synchronous machine with the exciter and salient poles.
Rotation speed of synchronous generator

By the definition, synchronous generators produce electricity whose frequency is synchronized with the mechanical rotational speed.

\[ f_e = \frac{n_m P}{120} \]  
(7.11.1)

Where \( f_e \) is the electrical frequency, Hz;
\( n_m \) is mechanical speed of magnetic field (rotor speed for synchronous machine), rpm;
\( P \) is the number of poles.

Steam turbines are most efficient when rotating at high speed; therefore, to generate 60 Hz, they are usually rotating at 3600 rpm and turn 2-pole generators.

Water turbines are most efficient when rotating at low speeds (200-300 rpm); therefore, they usually turn generators with many poles.
Internal generated voltage of a synchronous generator

The magnitude of internal generated voltage induced in a given stator is

\[ E_A = \sqrt{2\pi N C} \phi f = K \phi \omega \]

where \( K \) is a constant representing the construction of the machine, \( \phi \) is flux in it and \( \omega \) is its rotation speed.

Since flux in the machine depends on the field current through it, the internal generated voltage is a function of the rotor field current.

Magnetization curve (open-circuit characteristic) of a synchronous machine
The internally generated voltage in a single phase of a synchronous machine $E_A$ is not usually the voltage appearing at its terminals. It equals to the output voltage $V_\phi$ only when there is no armature current in the machine. The reasons that the armature voltage $E_A$ is not equal to the output voltage $V_\phi$ are:

1. Distortion of the air-gap magnetic field caused by the current flowing in the stator (armature reaction);
2. Self-inductance of the armature coils;
3. Resistance of the armature coils;
4. Effect of salient-pole rotor shapes.
Armature reaction (the largest effect):

When the rotor of a synchronous generator is spinning, a voltage $E_A$ is induced in its stator. When a load is connected, a current starts flowing creating a magnetic field in machine’s stator. This stator magnetic field $B_S$ adds to the rotor (main) magnetic field $B_R$ affecting the total magnetic field and, therefore, the phase voltage.
Equivalent circuit of a synchronous generator

Assuming that the generator is connected to a lagging load, the load current $I_A$ will create a stator magnetic field $B_S$, which will produce the armature reaction voltage $E_{stat}$. Therefore, the phase voltage will be

$$V_\phi = E_A + E_{stat} \quad (7.16.1)$$

The net magnetic flux will be

$$B_{net} = B_R + B_S \quad (7.16.2)$$

Note that the directions of the net magnetic flux and the phase voltage are the same.
Equivalent circuit of a synchronous generator

Assuming that the load reactance is $X$, the armature reaction voltage is

$$E_{stat} = -jXI_A$$  \hspace{1cm} (7.17.1)

The phase voltage is then

$$V_\phi = E_A - jXI_A$$  \hspace{1cm} (7.17.2)

Armature reactance can be modeled by the following circuit...

However, in addition to armature reactance effect, the stator coil has a self-inductance $L_A$ ($X_A$ is the corresponding reactance) and the stator has resistance $R_A$. The phase voltage is thus

$$V_\phi = E_A - jXI_A - jX_A I_A - RI_A$$  \hspace{1cm} (7.17.3)
Equivalent circuit of a synchronous generator

Often, armature reactance and self-inductance are combined into the synchronous reactance of the machine:

\[ X_S = X + X_A \]  \hspace{1cm} (7.18.1)

Therefore, the phase voltage is

\[ V_\phi = E_A - jX_S I_A - R I_A \]  \hspace{1cm} (7.18.2)

The equivalent circuit of a 3-phase synchronous generator is shown.

The adjustable resistor \( R_{adj} \) controls the field current and, therefore, the rotor magnetic field.
Equivalent circuit of a synchronous generator

A synchronous generator can be Y- or Δ-connected:

The terminal voltage will be

$$V_T = \sqrt{3}V_\phi \quad - \text{for } Y$$  \hspace{0.5cm} (7.19.1)$$

$$V_T = V_\phi \quad - \text{for } \Delta$$  \hspace{0.5cm} (7.19.2)$$
Equivalent circuit of a synchronous generator

Note: the discussion above assumed a balanced load on the generator!

Since – for balanced loads – the three phases of a synchronous generator are identical except for phase angles, per-phase equivalent circuits are often used.
Phasor diagram of a synchronous generator

Since the voltages in a synchronous generator are AC voltages, they are usually expressed as phasors. A vector plot of voltages and currents within one phase is called a phasor diagram.

A phasor diagram of a synchronous generator with a unity power factor (resistive load):

Lagging power factor (inductive load): a larger than for leading PF internal generated voltage $E_A$ is needed to form the same phase voltage.

Leading power factor (capacitive load).

For a given field current and magnitude of load current, the terminal voltage is lower for lagging loads and higher for leading loads.
Power and torque in synchronous generators

A synchronous generator needs to be connected to a prime mover whose speed is reasonably constant (to ensure constant frequency of the generated voltage) for various loads.

The applied mechanical power

\[ P_{\text{in}} = \tau_{\text{app}} \omega_m \]  

(7.22.1)

is partially converted to electricity

\[ P_{\text{conv}} = \tau_{\text{ind}} \omega_m = 3E_A I_A \cos \gamma \]  

(7.22.2)

Where \( \gamma \) is the angle between \( E_A \) and \( I_A \).

The power-flow diagram of a synchronous generator.
Power and torque in synchronous generators

The real output power of the synchronous generator is

\[ P_{out} = \sqrt{3} V_T I_L \cos \theta = 3 V_\phi I_A \cos \theta \]  
(7.23.1)

The reactive output power of the synchronous generator is

\[ Q_{out} = \sqrt{3} V_T I_L \sin \theta = 3 V_\phi I_A \sin \theta \]  
(7.23.2)

Recall that the power factor angle \( \theta \) is the angle between \( V_\phi \) and \( I_A \) and \textbf{not} the angle between \( V_T \) and \( I_L \).

In real synchronous machines of any size, the armature resistance \( R_A \ll X_S \) and, therefore, the armature resistance can be ignored. Thus, a simplified phasor diagram indicates that

\[ I_A \cos \theta = \frac{E_A \sin \delta}{X_S} \]  
(7.23.3)
Power and torque in synchronous generators

Then the real output power of the synchronous generator can be approximated as

$$P_{out} \approx \frac{3V_{\phi}E_A \sin \delta}{X_S} \quad (7.24.1)$$

We observe that electrical losses are assumed to be zero since the resistance is neglected. Therefore:

$$P_{conv} \approx P_{out} \quad (7.24.2)$$

Here $\delta$ is the torque angle of the machine – the angle between $V_{\phi}$ and $E_A$.

The maximum power can be supplied by the generator when $\delta = 90^0$:

$$P_{max} = \frac{3V_{\phi}E_A}{X_S} \quad (7.24.3)$$
Power and torque in synchronous generators

The maximum power specified by (7.24.3) is called the static stability limit of the generator. Normally, real generators do not approach this limit: full-load torque angles are usually between 15° and 20°.

The induced torque is

\[ \tau_{\text{ind}} = k B_R \times B_S = k B_R \times B_{\text{net}} = k B_R B_{\text{net}} \sin \delta \]  

(7.25.1)

Notice that the torque angle \( \delta \) is also the angle between the rotor magnetic field \( B_R \) and the net magnetic field \( B_{\text{net}} \).

Alternatively, the induced torque is

\[ \tau_{\text{ind}} = \frac{3V_{\phi}E_A \sin \delta}{\omega_m X_S} \]  

(7.25.2)
Measuring parameters of synchronous generator model

The three quantities must be determined in order to describe the generator model:

1. The relationship between field current and flux (and therefore between the field current $I_F$ and the internal generated voltage $E_A$);
2. The synchronous reactance;
3. The armature resistance.

We conduct first the open-circuit test on the synchronous generator: the generator is rotated at the rated speed, all the terminals are disconnected from loads, the field current is set to zero first. Next, the field current is increased in steps and the phase voltage (which is equal to the internal generated voltage $E_A$ since the armature current is zero) is measured.

Therefore, it is possible to plot the dependence of the internal generated voltage on the field current – the open-circuit characteristic (OCC) of the generator.
Measuring parameters of synchronous generator model

Since the unsaturated core of the machine has a reluctance thousands times lower than the reluctance of the air-gap, the resulting flux increases linearly first. When the saturation is reached, the core reluctance greatly increases causing the flux to increase much slower with the increase of the mmf.

We conduct next the short-circuit test on the synchronous generator: the generator is rotated at the rated speed, all the terminals are short-circuited through ammeters, the field current is set to zero first. Next, the field current is increased in steps and the armature current $I_A$ is measured as the field current is increased.

The plot of armature current (or line current) vs. the field current is the short-circuit characteristic (SCC) of the generator.
Measuring parameters of synchronous generator model

The SCC is a straight line since, for the short-circuited terminals, the magnitude of the armature current is

\[ I_A = \frac{E_A}{\sqrt{R_A^2 + X_S^2}} \]  

(7.28.1)

Since \( B_S \) almost cancels \( B_R \), the net field \( B_{net} \) is very small.
Measuring parameters of synchronous generator model

An approximate method to determine the synchronous reactance $X_S$ at a given field current:

1. Get the internal generated voltage $E_A$ from the OCC at that field current.
2. Get the short-circuit current $I_{A,SC}$ at that field current from the SCC.
3. Find $X_S$ from

$$X_S \approx \frac{E_A}{I_{A,SC}} \quad (7.29.1)$$

Since the internal machine impedance is

$$Z_S = \sqrt{R_A^2 + X_S^2} = \frac{E_A}{I_{A,SC}} \approx X_S \quad \{\text{since } X_S \gg R_A\} \quad (7.29.2)$$
Measuring parameters of synchronous generator model

A drawback of this method is that the internal generated voltage $E_A$ is measured during the OCC, where the machine can be saturated for large field currents, while the armature current is measured in SCC, where the core is unsaturated. Therefore, this approach is accurate for unsaturated cores only.

The approximate value of synchronous reactance varies with the degree of saturation of the OCC. Therefore, the value of the synchronous reactance for a given problem should be estimated at the approximate load of the machine.

The winding's resistance can be approximated by applying a DC voltage to a stationary machine's winding and measuring the current. However, AC resistance is slightly larger than DC resistance (skin effect).
Example 7.1: A 200 kVA, 480 V, 50 Hz, Y-connected synchronous generator with a rated field current of 5 A was tested and the following data were obtained:

1. $V_{T,OC} = 540$ V at the rated $I_F$.
2. $I_{L,SC} = 300$ A at the rated $I_F$.
3. When a DC voltage of 10 V was applied to two of the terminals, a current of 25 A was measured.

Find the generator’s model at the rated conditions (i.e., the armature resistance and the approximate synchronous reactance).

Since the generator is Y-connected, a DC voltage was applied between its two phases. Therefore:

\[
2R_A = \frac{V_{DC}}{I_{DC}}
\]

\[
R_A = \frac{V_{DC}}{2I_{DC}} = \frac{10}{2 \cdot 25} = 0.2 \, \Omega
\]
The internal generated voltage at the rated field current is

\[ E_A = V_{\phi,OC} = \frac{V_T}{\sqrt{3}} = \frac{540}{\sqrt{3}} = 311.8 \, V \]

The synchronous reactance at the rated field current is precisely

\[ X_S = \sqrt{Z_S^2 - R_A^2} = \sqrt{\frac{E_A^2}{I_{A,SC}^2} - R_A^2} = \sqrt{\frac{311.8^2}{300^2} - 0.2^2} = 1.02 \, \Omega \]

We observe that if \( X_S \) was estimated via the approximate formula, the result would be:

\[ X_S \approx \frac{E_A}{I_{A,SC}} = \frac{311.8}{300} = 1.04 \, \Omega \]

Which is close to the previous result. The error ignoring \( R_A \) is much smaller than the error due to core saturation.
The behavior of a synchronous generator varies greatly under load depending on the power factor of the load and on whether the generator is working alone or in parallel with other synchronous generators.

Although most of the synchronous generators in the world operate as parts of large power systems, we start our discussion assuming that the synchronous generator works alone.

Unless otherwise stated, the speed of the generator is assumed constant.
The Synchronous generator operating alone

Effects of load changes

A increase in the load is an increase in the real and/or reactive power drawn from the generator.

Since the field resistor is unaffected, the field current is constant and, therefore, the flux $\phi$ is constant too. Since the speed is assumed as constant, the magnitude of the internal generated voltage is constant also.

Assuming the same power factor of the load, change in load will change the magnitude of the armature current $I_A$. However, the angle will be the same (for a constant PF). Thus, the armature reaction voltage $jX_SI_A$ will be larger for the increased load. Since the magnitude of the internal generated voltage is constant

$$E_A = V_\phi + jX_SI_A$$

(7.34.1)

Armature reaction voltage vector will “move parallel” to its initial position.
The Synchronous generator operating alone

Increase load effect on generators with

Lagging PF

Leading PF

Unity PF
The Synchronous generator operating alone

Generally, when a load on a synchronous generator is added, the following changes can be observed:

1. For lagging (inductive) loads, the phase (and terminal) voltage decreases significantly.
2. For unity power factor (purely resistive) loads, the phase (and terminal) voltage decreases slightly.
3. For leading (capacitive) loads, the phase (and terminal) voltage rises.

Effects of adding loads can be described by the voltage regulation:

\[ VR = \frac{V_{nl} - V_{fl}}{V_{fl}} \times 100\% \]  \hspace{1cm} (7.36.1)

Where \( V_{nl} \) is the no-load voltage of the generator and \( V_{fl} \) is its full-load voltage.
The Synchronous generator operating alone

A synchronous generator operating at a lagging power factor has a fairly large positive voltage regulation. A synchronous generator operating at a unity power factor has a small positive voltage regulation. A synchronous generator operating at a leading power factor often has a negative voltage regulation.

Normally, a constant terminal voltage supplied by a generator is desired. Since the armature reactance cannot be controlled, an obvious approach to adjust the terminal voltage is by controlling the internal generated voltage $E_A = K\phi\omega$. This may be done by changing flux in the machine while varying the value of the field resistance $R_F$, which is summarized:

1. Decreasing the field resistance increases the field current in the generator.
2. An increase in the field current increases the flux in the machine.
3. An increased flux leads to the increase in the internal generated voltage.
4. An increase in the internal generated voltage increases the terminal voltage of the generator.

Therefore, the terminal voltage of the generator can be changed by adjusting the field resistance.
Example 7.2: A 480 V, 60 Hz, Y-connected six-pole synchronous generator has a per-phase synchronous reactance of 1.0 Ω. Its full-load armature current is 60 A at 0.8 PF lagging. Its friction and windage losses are 1.5 kW and core losses are 1.0 kW at 60 Hz at full load. Assume that the armature resistance (and, therefore, the \( I^2R \) losses) can be ignored. The field current has been adjusted such that the no-load terminal voltage is 480 V.

a. What is the speed of rotation of this generator?
b. What is the terminal voltage of the generator if
   1. It is loaded with the rated current at 0.8 PF lagging;
   2. It is loaded with the rated current at 1.0 PF;
   3. It is loaded with the rated current at 0.8 PF leading.
c. What is the efficiency of this generator (ignoring the unknown electrical losses) when it is operating at the rated current and 0.8 PF lagging?
d. How much shaft torque must be applied by the prime mover at the full load? how large is the induced countertorque?
e. What is the voltage regulation of this generator at 0.8 PF lagging? at 1.0 PF? at 0.8 PF leading?
The Synchronous generator operating alone: Example

Since the generator is Y-connected, its phase voltage is

\[ V_\phi = V_T / \sqrt{3} = 277 \, V \]

At no load, the armature current \( I_A = 0 \) and the internal generated voltage is \( E_A = 277 \, V \) and it is constant since the field current was initially adjusted that way.

a. The speed of rotation of a synchronous generator is

\[ n_m = \frac{120}{P} f_c = \frac{120}{6} \times 60 = 1200 \, rpm \]

which is

\[ \omega_m = \frac{1200}{60} \times 2\pi = 125.7 \, rad/s \]

b.1. For the generator at the rated current and the 0.8 PF lagging, the phasor diagram is shown. The phase voltage is at 0°, the magnitude of \( E_A \) is 277 V,
The Synchronous generator operating alone: Example

and that \[ jX_S I_A = j \cdot 1 \cdot 60 \angle -36.87^\circ = 60 \angle 53.13^\circ \]

Two unknown quantities are the magnitude of \( V_\phi \) and the angle \( \delta \) of \( E_A \). From the phasor diagram:

\[
E_A^2 = (V_\phi + X_S I_A \sin \theta)^2 + (X_S I_A \cos \theta)^2
\]

Then:

\[
V_\phi = \sqrt{E_A^2 - (X_S I_A \cos \theta)^2 - X_S I_A \sin \theta} = 236.8 \, V
\]

Since the generator is Y-connected,

\[
V_T = \sqrt{3V_\phi} = 410 \, V
\]
The Synchronous generator operating alone: Example

b.2. For the generator at the rated current and the 1.0 PF, the phasor diagram is shown. Then:

\[ V_\phi = \sqrt{E_A^2 - (X_S I_A \cos \theta)^2 - X_S I_A \sin \theta} = 270.4 \, V \]

and

\[ V_T = \sqrt{3} V_\phi = 468.4 \, V \]

b.3. For the generator at the rated current and the 0.8 PF leading, the phasor diagram is shown. Then:

\[ V_\phi = \sqrt{E_A^2 - (X_S I_A \cos \theta)^2 - X_S I_A \sin \theta} = 308.8 \, V \]

and

\[ V_T = \sqrt{3} V_\phi = 535 \, V \]
The Synchronous generator operating alone: Example

c. The output power of the generator at 60 A and 0.8 PF lagging is

\[ P_{out} = 3V\phi I_A \cos \theta = 3 \cdot 236.8 \cdot 60 \cdot 0.8 = 34.1 \text{ kW} \]

The mechanical input power is given by

\[ P_{in} = P_{out} + P_{elec loss} + P_{core loss} + P_{mech loss} = 34.1 + 0 + 1.0 + 1.5 = 36.6 \text{ kW} \]

The efficiency is

\[ \eta = \frac{P_{out}}{P_{in}} \cdot 100\% = \frac{34.1}{36.6} \cdot 100\% = 93.2\% \]

d. The input torque of the generator is

\[ \tau_{app} = \frac{P_{in}}{\omega_m} = \frac{36.6}{125.7} = 291.2 \text{ N} \cdot \text{m} \]
The induced countertorque of the generator is

\[ \tau_{app} = \frac{P_{conv}}{\omega_m} = \frac{34.1}{125.7} = 271.3 \text{ N\cdot m} \]

e. The voltage regulation of the generator is

Lagging PF: \[ VR = \frac{480 - 410}{410} \cdot 100\% = 17.1\% \]

Unity PF: \[ VR = \frac{480 - 468}{468} \cdot 100\% = 2.6\% \]

Lagging PF: \[ VR = \frac{480 - 535}{535} \cdot 100\% = -10.3\% \]
Terminal characteristics of synchronous generators

All generators are driven by a prime mover, such as a steam, gas, water, wind turbines, diesel engines, etc. Regardless the power source, most of prime movers tend to slow down with increasing the load. This decrease in speed is usually nonlinear but governor mechanisms of some type may be included to linearize this dependence.

The speed drop (SD) of a prime mover is defined as:

\[
SD = \frac{n_{nl} - n_{fl}}{n_{fl}} \cdot 100\%
\]

(7.44.1)

Most prime movers have a speed drop from 2% to 4%. Most governors have a mechanism to adjust the turbine’s no-load speed (set-point adjustment).
Terminal characteristics of synchronous generators

Since the shaft speed is linked to the electrical frequency as

\[ f_e = \frac{n_m P}{120} \]  

(7.45.1)

the power output from the generator is related to its frequency:

\[ P = S_p \left( f_{nl} - f_{sys} \right) \]  

(7.45.2)

Slope of curve, W/Hz

Operating frequency of the system
Terminal characteristics of synchronous generators

A similar relationship can be derived for the reactive power $Q$ and terminal voltage $V_T$. When adding a lagging load to a synchronous generator, its terminal voltage decreases. When adding a leading load to a synchronous generator, its terminal voltage increases.

The plot of terminal voltage vs. reactive power is not necessarily linear.

Both the frequency-power and terminal voltage vs. reactive power characteristics are important for parallel operations of generators.

When a generator is operating alone supplying the load:
1. The real and reactive powers are the amounts demanded by the load.
2. The governor of the prime mover controls the operating frequency of the system.
3. The field current controls the terminal voltage of the power system.
Example 7.3: A generator with no-load frequency of 61.0 Hz and a slope $s_p$ of 1 MW/Hz is connected to Load 1 consuming 1 MW of real power at 0.8 PF lagging. Load 2 (that is to be connected to the generator) consumes a real power of 0.8 MW at 0.707 PF lagging.

a. Find the operating frequency of the system before the switch is closed.
b. Find the operating frequency of the system after the switch is closed.
c. What action could an operator take to restore the system frequency to 60 Hz after both loads are connected to the generator?

The power produced by the generator is

$$P = s_p \left( f_{nl} - f_{sys} \right)$$

Therefore:

$$f_{sys} = f_{nl} - \frac{P}{s_p}$$
Terminal characteristics of synchronous generators: Example

a. The frequency of the system with one load is

\[ f_{sys} = f_{nl} - \frac{P}{s_p} = 61 - \frac{1}{1} = 60 \text{ Hz} \]

b. The frequency of the system with two loads is

\[ f_{sys} = f_{nl} - \frac{P}{s_p} = 61 - \frac{1.8}{1} = 59.2 \text{ Hz} \]

c. To restore the system to the proper operating frequency, the operator should increase the governor no-load set point by 0.8 Hz, to 61.8 Hz. This will restore the system frequency of 60 Hz.
Parallel operation of synchronous generators

Most of synchronous generators are operating in parallel with other synchronous generators to supply power to the same power system. Obvious advantages of this arrangement are:

1. Several generators can supply a bigger load;
2. A failure of a single generator does not result in a total power loss to the load increasing reliability of the power system;
3. Individual generators may be removed from the power system for maintenance without shutting down the load;
4. A single generator not operating at near full load might be quite inefficient. While having several generators in parallel, it is possible to turn off some of them when operating the rest at near full-load condition.
A diagram shows that Generator 2 (oncoming generator) will be connected in parallel when the switch $S_1$ is closed. However, closing the switch at an arbitrary moment can severely damage both generators!

If voltages are not exactly the same in both lines (i.e. in $a$ and $a'$, $b$ and $b'$ etc.), a very large current will flow when the switch is closed. Therefore, to avoid this, voltages coming from both generators must be exactly the same. Therefore, the following conditions must be met:

1. The rms line voltages of the two generators must be equal.
2. The two generators must have the same phase sequence.
3. The phase angles of two $a$ phases must be equal.
4. The frequency of the oncoming generator must be slightly higher than the frequency of the running system.
Conditions required for paralleling

If the phase sequences are different, then even if one pair of voltages (phases a) are in phase, the other two pairs will be 120° out of phase creating huge currents in these phases.

If the frequencies of the generators are different, a large power transient may occur until the generators stabilize at a common frequency. The frequencies of two machines must be very close to each other but not exactly equal. If frequencies differ by a small amount, the phase angles of the oncoming generator will change slowly with respect to the phase angles of the running system. If the angles between the voltages can be observed, it is possible to close the switch $S_1$ when the machines are in phase.
General procedure for paralleling generators

When connecting the generator $G_2$ to the running system, the following steps should be taken:

1. Adjust the field current of the oncoming generator to make its terminal voltage equal to the line voltage of the system (use a voltmeter).
2. Compare the phase sequences of the oncoming generator and the running system. This can be done by different ways:
   1) Connect a small induction motor to the terminals of the oncoming generator and then to the terminals of the running system. If the motor rotates in the same direction, the phase sequence is the same;
   2) Connect three light bulbs across the open terminals of the switch. As the phase changes between the two generators, light bulbs get brighter (large phase difference) or dimmer (small phase difference). If all three bulbs get bright and dark together, both generators have the same phase sequences.
General procedure for paralleling generators

*If phase sequences are different, two of the conductors on the oncoming generator must be reversed.*

3. The frequency of the oncoming generator is adjusted to be slightly higher than the system’s frequency.
4. Turn on the switch connecting $G_2$ to the system when phase angles are equal.

The simplest way to determine the moment when two generators are in phase is by observing the same three light bulbs. When all three lights go out, the voltage across them is zero and, therefore, machines are in phase.

A more accurate way is to use a synchroscope – a meter measuring the difference in phase angles between two a phases. However, a synchroscope does not check the phase sequence since it only measures the phase difference in one phase.

The whole process is usually automated…
Often, when a synchronous generator is added to a power system, that system is so large that one additional generator does not cause observable changes to the system. A concept of an infinity bus is used to characterize such power systems. An infinite bus is a power system that is so large that its voltage and frequency do not vary regardless of how much real and reactive power is drawn from or supplied to it. The power-frequency and reactive power-voltage characteristics are:
Consider adding a generator to an infinite bus supplying a load.

The frequency and terminal voltage of all machines must be the same. Therefore, their power-frequency and reactive power-voltage characteristics can be plotted with a common vertical axis.

Such plots are called sometimes as house diagrams.
Operation of generators in parallel with large power systems

If the no-load frequency of the oncoming generator is slightly higher than the system’s frequency, the generator will be “floating” on the line supplying a small amount of real power and little or no reactive power.

If the no-load frequency of the oncoming generator is slightly lower than the system's frequency, the generator will supply a negative power to the system: the generator actually consumes energy acting as a motor! Many generators have circuitry automatically disconnecting them from the line when they start consuming energy.
Operation of generators in parallel with large power systems

If the frequency of the generator is increased after it is connected to the infinite bus, the system frequency cannot change and the power supplied by the generator increases.

Notice that when $E_A$ stays constant (field current and speed are the same), $E_A \sin \delta$ (which is proportional to the output power if $V_T$ is constant) increases.

If the frequency of the generator is further increased, power output from the generator will be increased and at some point it may exceed the power consumed by the load. This extra power will be consumed by the load.
Operation of generators in parallel with large power systems

After the real power of the generator is adjusted to the desired value, the generator will be operating at a slightly leading PF acting as a capacitor that consumes reactive power. Adjusting the field current of the machine, it is possible to make it to supply reactive power $Q$ to the system.

Summarizing, when the generator is operating in parallel to an infinite bus:

1. The frequency and terminal voltage of the generator are controlled by the system to which it is connected.
2. The governor set points of the generator control the real power supplied by the generator to the system.
3. The generator’s field current controls the reactive power supplied by the generator to the system.
Generators in parallel with other generators of the same size

When a generator is working alone, its real and reactive power are fixed and determined by the load.
When a generator is connected to an infinite bus, its frequency and the terminal voltage are constant and determined by a bus.

When two generators of the same size are connected to the same load, the sum of the real and reactive powers supplied by the two generators must equal the real and reactive powers demanded by the load:

\[
P_{\text{tot}} = P_{\text{load}} = P_{G1} + P_{G2} \quad (7.59.1)
\]

\[
Q_{\text{tot}} = Q_{\text{load}} = Q_{G1} + Q_{G2} \quad (7.59.2)
\]
Generators in parallel with other generators of the same size

Since the frequency of $G_2$ must be slightly higher than the system’s frequency, the power-frequency diagram right after $G_2$ is connected to the system is shown.

If the frequency of $G_2$ is next increased, its power-frequency diagram shifts upwards. Since the total power supplied to the load is constant, $G_2$ starts supplying more power and $G_1$ starts supplying less power and the system’s frequency increases.
Generators in parallel with other generators of the same size

Therefore, when two generators are operating together, an increase in frequency (governor set point) on one of them:

1. Increases the system frequency.
2. Increases the real power supplied by that generator, while reducing the real power supplied by the other one.

When two generators are operating together, an increase in the field current on one of them:

1. Increases the system terminal voltage.
2. Increases the reactive power supplied by that generator, while reducing the reactive power supplied by the other.

If the frequency-power curves of both generators are known, the powers supplied by each generator and the resulting system frequency can be determined.
Generators in parallel with other generators of the same size: Ex

Example 7.4: Two generators are set to supply the same load. Generator 1 has a no-load frequency of 61.5 Hz and a slope \( s_{p1} \) of 1 MW/Hz. Generator 2 has a no-load frequency of 61.0 Hz and a slope \( s_{p2} \) of 1 MW/Hz. The two generators are supplying a real load of 2.5 MW at 0.8 PF lagging.

a. Find the system frequency and power supplied by each generator.
b. Assuming that an additional 1 MW load is attached to the power system, find the new system frequency and powers supplied by each generator.
c. With the additional load attached (total load of 3.5 MW), find the system frequency and the generator powers, if the no-load frequency of \( G_2 \) is increased by 0.5 Hz.

The power produced by a synchronous generator with a given slope and a no-load frequency is

\[
P = s_p \left( f_{nl} - f_{sys} \right)
\]
Generators in parallel with other generators of the same size: Ex

The total power supplied by the generators equals to the power consumed by the load:

\[ P_{\text{load}} = P_1 + P_2 \]

a. The system frequency can be found from:

\[ P_{\text{load}} = P_1 + P_2 = s_{p1} \left( f_{nl,1} - f_{\text{sys}} \right) + s_{p2} \left( f_{nl,2} - f_{\text{sys}} \right) \]

as

\[ f_{\text{sys}} = \frac{s_{p1} f_{nl,1} + s_{p2} f_{nl,2} - P_{\text{load}}}{s_{p1} + s_{p2}} = \frac{1 \cdot 61.5 + 1 \cdot 61.0 - 2.5}{1 + 1} = 60.0 \text{ Hz} \]

The powers supplied by each generator are:

\[ P_1 = s_{p1} \left( f_{nl,1} - f_{\text{sys}} \right) = 1 \cdot (61.5 - 60) = 1.5 \text{ MW} \]

\[ P_2 = s_{p2} \left( f_{nl,2} - f_{\text{sys}} \right) = 1 \cdot (61.0 - 60) = 1 \text{ MW} \]
Generators in parallel with other generators of the same size: Ex

b. For the new load of 3.5 MW, the system frequency is

\[ f_{sys} = \frac{s_{p1}f_{nl,1} + s_{p2}f_{nl,2} - P_{load}}{s_{p1} + s_{p2}} = \frac{1 \cdot 61.5 + 1 \cdot 61.0 - 3.5}{1 + 1} = 59.5 \text{ Hz} \]

The powers are:

\[ P_1 = s_{p1} \left( f_{nl,1} - f_{sys} \right) = 1 \cdot (61.5 - 59.5) = 2.0 \text{ MW} \]

\[ P_2 = s_{p2} \left( f_{nl,2} - f_{sys} \right) = 1 \cdot (61.0 - 59.5) = 1.5 \text{ MW} \]

c. If the no-load frequency of G_2 increases, the system frequency is

\[ f_{sys} = \frac{s_{p1}f_{nl,1} + s_{p2}f_{nl,2} - P_{load}}{s_{p1} + s_{p2}} = \frac{1 \cdot 61.5 + 1 \cdot 61.5 - 3.5}{1 + 1} = 59.75 \text{ Hz} \]

The powers are:

\[ P_1 = P_2 = s_{p1} \left( f_{nl,1} - f_{sys} \right) = 1 \cdot (61.5 - 59.75) = 1.75 \text{ MW} \]
Generators in parallel with other generators of the same size

When two generators of the same size are working in parallel, a change in frequency (governor set points) of one of them changes both the system frequency and power supplied by each generator.

To adjust power sharing without changing the system frequency, we need to increase the frequency (governor set points) of one generator and simultaneously decrease the frequency of the other generator.

To adjust the system frequency without changing power sharing, we need to simultaneously increase or decrease the frequency (governor set points) of both generators.
Generators in parallel with other generators of the same size

Similarly, to adjust the reactive power sharing without changing the terminal voltage, we need to increase simultaneously the field current of one generator and decrease the field current of the other generator.

To adjust the terminal voltage without changing the reactive power sharing, we need to simultaneously increase or decrease the field currents of both generators.
Generators in parallel with other generators of the same size

It is important that both generators being paralleled have dropping frequency-power characteristics.

If two generators have flat or almost flat frequency-power characteristics, the power sharing between them can vary widely with only finest changes in no-load speed. For good of power sharing between generators, they should have speed drops of 2% to 5%.
Synchronous motors

The field current $I_F$ of the motor produces a steady-state rotor magnetic field $B_R$. A 3-phase set of voltages applied to the stator produces a 3-phase current flow in the windings.

A 3-phase set of currents in an armature winding produces a uniform rotating magnetic field $B_S$.

Two magnetic fields are present in the machine, and the rotor field tends to align with the stator magnetic field. Since the stator magnetic field is rotating, the rotor magnetic field will try to catch up pulling the rotor.

The larger the angle between two magnetic fields (up to a certain maximum), the greater the torque on the rotor of the machine.
A synchronous motor has the same equivalent circuit as synchronous generator, except that the direction of power flow (and the direction of $I_A$) is reversed. Per-phase circuit is shown:

A change in direction of $I_A$ changes the Kirchhoff’s voltage law equation:

$$V_\phi = E_A + jX_S I_A + R_A I_A$$ (7.69.1)

Therefore, the internal generated voltage is

$$E_A = V_\phi - jX_S I_A - R_A I_A$$ (7.69.2)

We observe that this is exactly the same equation as the equation for the generator, except that the sign on the current terms is reversed.
Synchronous motor vs. synchronous generator

Let us suppose that a phasor diagram of synchronous generator is shown. $B_R$ produces $E_A$, $B_{net}$ produces $V_{\phi}$ and $B_S$ produces $E_{stat} = -jX_{Sl}$. The rotation on both diagrams is counterclockwise and the induced torque is 

$$\tau_{ind} = kB_R \times B_{net}$$

(7.70.1)

clockwise, opposing the direction of rotation. In other words, the induced torque in generators is a counter-torque that opposes the rotation caused by external torque.

If the prime mover loses power, the rotor will slow down and the rotor field $B_R$ will fall behind the magnetic field in the machine $B_{net}$. Therefore, the operation of the machine changes...
Synchronous motor vs. synchronous generator

The induced torque becomes counter-clockwise, being now in the direction of rotation. The machine starts acting as a motor. The increasing torque angle $\delta$ results in an increasing torque in the direction of rotation until it equals to the load torque.

At this point, the machine operates at steady state and synchronous speed but as a motor.

Notice that, since the direction of $I_A$ is changed between the generator and motor actions, the polarity of stator voltage ($-jX_S I_A$) also changes.

In a summary: in a generator, $E_A$ lies ahead of $V_\phi$ while in a motor, $E_A$ lies behind $V_\phi$. 
Steady-state operation of motor: Torque-speed curve

Usually, synchronous motors are connected to large power systems (infinite bus); therefore, their terminal voltage and system frequency are constant regardless the motor load. Since the motor speed is locked to the electrical frequency, the speed should be constant regardless the load.

The steady-state speed of the motor is constant from no-load to the maximum torque that motor can supply (pullout torque). Therefore, the speed regulation of synchronous motor is 0%.

The induced torque is

\[ \tau_{\text{ind}} = k B_R B_{\text{net}} \sin \delta \]  \hspace{1cm} (7.72.1)

or

\[ \tau_{\text{ind}} = \frac{3 V \phi E_A}{\omega_m X_S} \sin \delta \]  \hspace{1cm} (7.72.2)
Steady-state operation of motor: Torque-speed curve

The maximum pullout torque occurs when $\delta = 90^0$:

$$\tau_{max} = k B_R B_{net} = \frac{3V \phi E_A}{\omega_m X_S}$$

(7.73.1)

Normal full-load torques are much less than that (usually, about 3 times smaller).

When the torque on the shaft of a synchronous motor exceeds the pullout torque, the rotor can no longer remain locked to the stator and net magnetic fields. It starts to slip behind them. As the motor slows down, the stator magnetic field “lags” it repeatedly, and the direction of the induced torque in the rotor reverses with each pass. As a result, huge torque surges of alternating direction cause the motor vibrate severely. The loss of synchronization after the pullout torque is exceeded is known as slipping poles.
Steady-state operation of motor: Effect of torque changes

Assuming that a synchronous motor operates initially with a leading PF. If the load on the motor increases, the rotor initially slows down increasing the torque angle $\delta$. As a result, the induced torque increases speeding up the rotor up to the synchronous speed with a larger torque angle $\delta$.

Since the terminal voltage and frequency supplied to the motor are constant, the magnitude of internal generated voltage must be constant at the load changes ($E_A = K \phi \omega$ and field current is constant).
Steady-state operation of motor: Effect of torque changes

Assuming that the armature resistance is negligible, the power converted from electrical to mechanical form in the motor will be the same as its input power:

\[ P = 3V_\phi I_A \cos \theta = \frac{3V_\phi E_A}{X_S} \sin \delta \]  

(7.73.1)

Since the phase voltage is constant, the quantities \( I_A \cos \theta \) and \( E_A \sin \delta \) are directly proportional to the power supplied by (and to) the motor. When the power supplied by the motor increases, the distance proportional to power increases.

Since the internal generated voltage is constant, its phasor “swings down” as load increases. The quantity \( jX_S I_A \) has to increase; therefore, the armature current \( I_A \) increases too.

Also, the PF angle changes too moving from leading to lagging.
Steady-state operation of motor: Effect of field current changes

Assuming that a synchronous motor operates initially with a lagging PF. If, for the constant load, the field current on the motor increases, the magnitude of the internal generated voltage $E_A$ increases.

Since changes in $I_A$ do not affect the shaft speed and the motor load is constant, the real power supplied by the motor is unchanged. Therefore, the distances proportional to power on the phasor diagram ($E_A \sin \delta$ and $I_A \cos \theta$) must be constant.

Notice that as $E_A$ increases, the magnitude of the armature current $I_A$ first decreases and then increases again. At low $E_A$, the armature current is lagging and the motor is an inductive load that consumes reactive power $Q$. As the field current increases, $I_A$ eventually lines up with $V_\phi$ and the motor is purely resistive. As the field current further increases, $I_A$ becomes leading and the motor is a capacitive load that supplies reactive power $Q$ to the system (consumes $-Q$).
A plot of armature current vs. field current is called a synchronous motor V curve. V curves for different levels of real power have their minimum at unity PF, when only real power is supplied to the motor. For field currents less than the one giving the minimum $I_A$, the armature current is lagging and the motor consumes reactive power. For field currents greater than the one giving the minimum $I_A$, the armature current is leading and the motor supplies reactive power to the system.

Therefore, by controlling the field current of a synchronous motor, the reactive power consumed or supplied to the power system can be controlled.
Steady-state operation of motor: Effect of field current changes

When the projection of the phasor $E_A$ onto $V_\phi$ ($E_A \cos \delta$) is shorter than $V_\phi$, a synchronous motor has a lagging current and consumes $Q$. Since the field current is small in this situation, the motor is said to be under-excited.

When the projection of the phasor $E_A$ onto $V_\phi$ ($E_A \cos \delta$) is longer than $V_\phi$, a synchronous motor has a leading current and supplies $Q$ to the system. Since the field current is large in this situation, the motor is said to be over-excited.
Steady-state operation of motor: power factor correction

Assuming that a load contains a synchronous motor (whose PF can be adjusted) in addition to motors of other types. What does the ability to set the PF of one of the loads do for the power system?

Let us consider a large power system operating at 480 V. Load 1 is an induction motor consuming 100 kW at 0.78 PF lagging, and load 2 is an induction motor consuming 200 kW at 0.8 PF lagging. Load 3 is a synchronous motor whose real power consumption is 150 kW.

a. If the synchronous motor is adjusted to 0.85 PF lagging, what is the line current?
b. If the synchronous motor is adjusted to 0.85 PF leading, what is the line current?
c. Assuming that the line losses are \( P_{LL} = 3I_L^2R_L \), how do these losses compare in the two cases?
Steady-state operation of motor: power factor correction

a. The real power of load 1 is 100 kW, and the reactive power of load 1 is

\[ Q_1 = P_1 \tan \theta = 100 \tan \left( \cos^{-1} 0.78 \right) = 80.2 \text{kVAR} \]

The real power of load 2 is 200 kW, and the reactive power of load 2 is

\[ Q_2 = P_2 \tan \theta = 200 \tan \left( \cos^{-1} 0.8 \right) = 150 \text{kVAR} \]

The real power of load 3 is 150 kW, and the reactive power of load 3 is

\[ Q_3 = P_3 \tan \theta = 150 \tan \left( \cos^{-1} 0.85 \right) = 93 \text{kVAR} \]

The total real load is

\[ P_{tot} = P_1 + P_2 + P_3 = 100 + 200 + 150 = 450 \text{kW} \]

The total reactive load is

\[ Q_{tot} = Q_1 + Q_2 + Q_3 = 80.2 + 150 + 93 = 323.2 \text{kVAR} \]

The equivalent system PF is

\[ PF = \cos \theta = \cos \left( \tan^{-1} \frac{Q}{P} \right) = \cos \left( \tan^{-1} \frac{323.2}{450} \right) = 0.812 \text{ lagging} \]

The line current is

\[ I_L = \frac{P_{tot}}{\sqrt{3}V_L \cos \theta} = \frac{450000}{\sqrt{3} \cdot 480 \cdot 0.812} = 667 \text{ A} \]
Steady-state operation of motor: power factor correction

b. The real and reactive powers of loads 1 and 2 are the same. The reactive power of load 3 is

\[ Q_3 = P_3 \tan \theta = 150 \tan \left( -\cos^{-1} 0.85 \right) = -93 \text{ kVAR} \]

The total real load is

\[ P_{tot} = P_1 + P_2 + P_3 = 100 + 200 + 150 = 450 \text{ kW} \]

The total reactive load is

\[ Q_{tot} = Q_1 + Q_2 + Q_3 = 80.2 + 150 - 93 = 137.2 \text{ kVAR} \]

The equivalent system PF is

\[ PF = \cos \theta = \cos \left( \tan^{-1} \frac{Q}{P} \right) = \cos \left( \tan^{-1} \frac{137.2}{450} \right) = 0.957 \text{ lagging} \]

The line current is

\[ I_L = \frac{P_{tot}}{\sqrt{3} V_L \cos \theta} = \frac{450000}{\sqrt{3} \cdot 480 \cdot 0.957} = 566 \text{ A} \]
Steady-state operation of motor: power factor correction

c. The transmission line losses in the first case are

\[ P_{LL} = 3I_L^2 R_L = 1344700 \, R_L \]

The transmission line losses in the second case are

\[ P_{LL} = 3I_L^2 R_L = 961070 \, R_L \]

We notice that the transmission power losses are 28% less in the second case, while the real power supplied to the loads is the same.
Steady-state operation of motor: power factor correction

The ability to adjust the power factor of one or more loads in a power system can significantly affect the efficiency of the power system: the lower the PF, the greater the losses in the power lines. Since most loads in a typical power system are induction motors, having one or more over-excited synchronous motors (leading loads) in the system is useful for the following reasons:

1. A leading load supplies some reactive power to lagging loads in the system. Since this reactive power does not travel along the transmission line, transmission line current is reduced reducing power losses.
2. Since the transmission line carries less current, the line can be smaller for a given power flow reducing system cost.
3. The over-excited mode of synchronous motor increases the motor’s maximum torque.

Usage of synchronous motors or other equipment increasing the overall system’s PF is called power-factor correction. Since a synchronous motor can provide PF correction, many loads that can accept constant speed are driven by over-excited synchronous motors.
Starting synchronous motors

Consider a 60 Hz synchronous motor. When the power is applied to the stator windings, the rotor (and, therefore its magnetic field $B_R$) is stationary. The stator magnetic field $B_S$ starts sweeping around the motor at synchronous speed. Note that the induced torque on the shaft

$$\tau_{ind} = k B_R \times B_S$$  \hspace{1cm} (7.84.1)

is zero at $t = 0$ since both magnetic fields are aligned.

At $t = 1/240$ s the rotor has barely moved but the stator magnetic field $B_S$ has rotated by $90^0$. Therefore, the torque on the shaft is non-zero and counter-clockwise.
Starting synchronous motors

At $t = 1/120 \text{ s}$ the rotor and stator magnetic fields point in opposite directions, and the induced torque on the shaft is zero again.

At $t = 3/240 \text{ s}$ the stator magnetic fields point to the right, and the induced torque on the shaft is non-zero but clockwise.

Finally, at $t = 1/60 \text{ s}$ the rotor and stator magnetic fields are aligned again, and the induced torque on the shaft is zero.

During one electrical cycle, the torque was counter-clockwise and then clockwise, and the average torque is zero. The motor will vibrate heavily and finally overheats!
Starting synchronous motors

Three basic approaches can be used to safely start a synchronous motor:

1. Reduce the speed of the stator magnetic field to a low enough value that the rotor can accelerate and two magnetic fields lock in during one half-cycle of field rotation. This can be achieved by reducing the frequency of the applied electric power (which used to be difficult but can be done now).

2. Use an external prime mover to accelerate the synchronous motor up to synchronous speed, go through the paralleling procedure, and bring the machine on the line as a generator. Next, turning off the prime mover will make the synchronous machine a motor.

3. Use damper windings or amortisseur windings – the most popular.
Motor starting by amortisseur or damper windings

Amortisseur (damper) windings are special bars laid into notches carved in the rotor face and then shorted out on each end by a large shorting ring.
Motor starting by amortisseur or damper windings

A diagram of a salient 2-pole rotor with an amortisseur winding, with the shorting bars on the ends of the two rotor pole faces connected by wires (not quite the design of actual machines).

We assume initially that the rotor windings are disconnected and only a 3-phase set of voltages are applied to the stator.

At $t = 0$, assume that $B_s$ (stator field) is vertical.

As $B_s$ sweeps along in a counter-clockwise direction, it induces a voltage in bars of the amortisseur winding:

$$e_{ind} = \left( \mathbf{v} \times \mathbf{B} \right) \cdot \mathbf{l} \quad (7.88.1)$$
Motor starting by amortisseur or damper windings

Here

\[ v \] – the velocity of the bar relative to the magnetic field;

\( B \) – magnetic flux density vector;

\( l \) – length of conductor in the magnetic field.

The bars at the top of the rotor are moving to the right relative to the magnetic field: a voltage, with direction out of page, will be induced. Similarly, the induced voltage is into the page in the bottom bars. These voltages produce a current flow out of the top bars and into the bottom bars generating a winding magnetic field \( B_w \) to the right. Two magnetic fields will create a torque

\[
\tau_{ind} = kB_w \times B_S
\]

(7.89.1)

The resulting induced torque will be counter-clockwise.
Motor starting by amortisseur or damper windings

At $t = 1/240$ s, $B_S$ has rotated $90^0$ while the rotor has barely moved. Since $\nu$ is parallel to $B_S$, the voltage induced in the amortisseur windings is zero, therefore, no current in wires create a zero-torque.

At $t = 1/120$ s, $B_S$ has rotated another $90^0$ and the rotor is still. The voltages induced in the bars create a current inducing a magnetic field pointing to the left. The torque is counter-clockwise.

Finally, at $t = 3/240$ s, no voltage is induced in the amortisseur windings and, therefore, the torque will be zero.
Motor starting by amortisseur or damper windings

We observe that the torque is either counter-clockwise or zero, but it is always unidirectional. Since the net torque is nonzero, the motor will speed up.

However, the rotor will never reach the synchronous speed! If a rotor was running at the synchronous speed, the speed of stator magnetic field $B_S$ would be the same as the speed of the rotor and, therefore, no relative motion between the rotor and the stator magnetic field. If there is no relative motion, no voltage is induced and, therefore, the torque will be zero.

Instead, when the rotor’s speed is close to synchronous, the regular field current can be turned on and the motor will operate normally. In real machines, field circuit are shorted during starting. Therefore, if a machine has damper winding:
1. Disconnect the field windings from their DC power source and short them out;
2. Apply a 3-phase voltage to the stator and let the rotor to accelerate up to near-synchronous speed. The motor should have no load on its shaft to enable motor speed to approach the synchronous speed as closely as possible;
3. Connect the DC field circuit to its power source: the motor will lock at synchronous speed and loads may be added to the shaft.
Relationship between synchronous generators and motors

Synchronous generator and synchronous motor are physically the same machines! A synchronous machine can supply real power to (generator) or consume real power (motor) from a power system. It can also either consume or supply reactive power to the system.

1. The distinguishing characteristic of a synchronous generator (supplying $P$) is that $E_A$ lies ahead of $V_\phi$ while for a motor $E_A$ lies behind $V_\phi$.
2. The distinguishing characteristic of a machine supplying reactive power $Q$ is that $E_a \cos \delta > V_\phi$ (regardless whether it is a motor or generator). The machine consuming reactive power $Q$ has $E_a \cos \delta < V_\phi$. 
Synchronous machine ratings

The speed and power that can be obtained from a synchronous motor or generator are limited. These limited values are called ratings of the machine. The purpose of ratings is to protect the machine from damage. Typical ratings of synchronous machines are voltage, speed, apparent power (kVA), power factor, field current and service factor.

1. Voltage, Speed, and Frequency

The rated frequency of a synchronous machine depends on the power system to which it is connected. The commonly used frequencies are 50 Hz (Europe, Asia), 60 Hz (Americas), and 400 Hz (special applications: aircraft, spacecraft, etc.). Once the operation frequency is determined, only one rotational speed in possible for the given number of poles:

\[ n_m = \frac{120f_e}{P} \]  

(7.93.1)
Synchronous machine ratings

A generator’s voltage depends on the flux, the rotational speed, and the mechanical construction of the machine. For a given design and speed, the higher the desired voltage, the higher the flux should be. However, the flux is limited by the field current.

The rated voltage is also limited by the windings insulation breakdown limit, which should not be approached closely.

Is it possible to operate a synchronous machine at a frequency other than the machine is rated for? For instance, can a 60 Hz generator operate at 50 Hz?

The change in frequency would change the speed. Since $E_A = K\phi \omega$, the maximum allowed armature voltage changes when frequency changes. Specifically, if a 60 Hz generator will be operating at 50 Hz, its operating voltage must be derated to 50/60 or 83.3 %.
Synchronous machine ratings

2. Apparent power and Power factor

Two factors limiting the power of electric machines are
1) Mechanical torque on its shaft (usually, shaft can handle much more torque)
2) Heating of the machine’s winding

The practical steady-state limits are set by heating in the windings. The maximum acceptable armature current sets the apparent power rating for a generator:

\[ S = 3V \phi I_A \]  
(7.95.1)

If the rated voltage is known, the maximum accepted armature current determines the apparent power rating of the generator:

\[ S = 3V_{\phi,\text{rated}} I_{A,\text{max}} = \sqrt{3}V_{L,\text{rated}} I_{L,\text{max}} \]  
(7.95.2)

The power factor of the armature current is irrelevant for heating the armature windings.
Synchronous machine ratings

The stator copper losses also do not depend on the current angle:

\[ P_{SCL} = 3I_A^2R_A \]  (7.96.1)

Since the current angle is irrelevant to the armature heating, synchronous generators are rated in kVA rather than in KW.

The rotor (field winding) copper losses are:

\[ P_{RCL} = I_F^2R_F \]  (7.96.2)

Allowable heating sets the maximum field current, which determines the maximum acceptable armature voltage \( E_A \). These translate to restrictions on the lowest acceptable power factor: The current \( I_A \) can have different angles (that depends on PF). \( E_A \) is a sum of \( V_\phi \) and \( jX_SI_A \). We see that, (for a constant \( V_\phi \)) for some angles the required \( E_A \) exceeds its maximum value.
Synchronous machine ratings

If the armature voltage exceeds its maximum allowed value, the windings could be damaged. The angle of $I_A$ that requires maximum possible $E_A$ specifies the rated power factor of the generator. It is possible to operate the generator at a lower (more lagging) PF than the rated value, but **only** by decreasing the apparent power supplied by the generator.

Synchronous motors are usually rated in terms of real output power and the lowest PF at full-load conditions.

**3. Short-time operation and service factor**

A typical synchronous machine is often able to supply up to 300% of its rated power for a while (until its windings burn up). This ability to supply power above the rated values is used to supply momentary power surges during motor starts.

It is also possible to use synchronous machine at powers exceeding the rated values for longer periods of time, as long as windings do not have time to hit up too much before the excess load is removed. For instance, a generator that could supply 1 MW indefinitely, would be able to supply 1.5 MW for 1 minute without serious harm and for longer periods at lower power levels.
The maximum temperature rise that a machine can stand depends on the insulation class of its windings. The four standard insulation classes with their temperature ratings are:

- A – 60°C above the ambient temperature
- B – 80°C above the ambient temperature
- F – 105°C above the ambient temperature
- H – 125°C above the ambient temperature

The higher the insulation class of a given machine, the greater the power that can be drawn out of it without overheating its windings.

The overheating is a serious problem and synchronous machines should not be overheated unless absolutely necessary. However, power requirements of the machine are not always known exactly prior to its installation. Because of this, general-purpose machines usually have their service factor defined as the ratio of the actual maximum power of the machine to the rating on its plate. For instance, a machine with a service factor of 1.15 can actually be operated at 115% of the rated load indefinitely without harm.