QCAD

An Introduction to Computer-Aided Design (CAD)

Andrew Mustun

The complete book is available for purchase from: http://www.qcad.org/shop
Table of Contents

Introduction

8

Part I: First Steps with QCAD

15

Introducing the QCAD Application

16
- The First Start
- The Application Window

Using CAD Tools

19
- The CAD Toolbar
- Starting Tools
- Correcting Mistakes
- The Neutral State of QCAD
- Hands-on: Drawing a Rectangle
- Hands-on: A Line through the Middle
- Hands-on: Printing a Drawing
- Closing QCAD

Part II: Basic CAD Concepts

25

Viewing

26
- The Viewing Tools
- Hands-on: Zooming in and out
- Hands-on: Panning
- Hands-on: Auto Zoom
- Hands-on: Window Zoom
- Notes
- Exercises

Layers

31
- What are Layers?
- Layers, Groups and Blocks
- Example Uses for Layers
- The Layer List
- Layers and Line Types
- Hands-on: Using Layers

Precision

39
- Precision in CAD

The complete book is available for purchase from: http://www.qcad.org/shop
The Importance of Being Precise 39
Precision Techniques 39
Exercises 40

Snap Tools 41
What are Snap Tools? 41
Snap Restrictions 47
Exercises 48

Coordinates 50
The Cartesian Coordinate System 50
Absolute Cartesian Coordinates 51
Relative Cartesian Coordinates 52
Absolute Polar Coordinates 52
Relative Polar Coordinates 53
Notes 53
Hands-on: Drawing a Triangle from Three Absolute Coordinates 53
Notes for Advanced Users 54
Hands-on: Drawing a Shape Using Relative Coordinates 55
Hands-on: Drawing a Shape Using Absolute Polar Coordinates 56
Hands-on: Drawing a Rhombus Using Relative Polar Coordinates 58
Exercises 59

Part III: Drawing and Editing with QCAD 61

Drawing Tools 62
Choosing a Drawing Tool 62
Preparations before Drawing 62
Line Tools 63
Arc Tools 74
Circle Tools 80
Ellipse Tools 84
Spline Tools 86
Polyline Tools 89

Selection and Modification 96
Introduction 96
Modification Tools Which Operate on a Selection 96
Deleting Blocks 190
Exploding Block References 190

The Library Browser 191
What is a Part Library? 191
The Library Browser 191
Extending the Part Library 194

Part V: Import, Export and Printing 197

Import 198
Bitmap Import 198
SVG Import 200

Export 201
Exporting Drawings 201
Bitmap Export 201
SVG Export 203
PDF Export 203
DXF Export 204

Printing 206
Printing a Drawing 206
Printing a Drawing to Scale 208
After the start, QCAD is in its neutral state. That means that no special tool is active and QCAD waits for you to click a menu or tool button to start a tool and start doing something.

If you get lost in a tool while working with QCAD, you can easily return to this neutral state by clicking the arrow tool button at the top left.

Alternatively, you can also click the right button of your mouse to return back to the neutral state step by step. Depending how far you have progressed with a tool, you might have to click the right mouse button more than once to fully return to the neutral state. The same can also be achieved by hitting the Escape key on your keyboard a multiple times.

Hands-on: Drawing a Rectangle

The following instructions guide you through the complete procedure of drawing a simple rectangle. You will probably not yet understand all steps involved but it is crucial that you successfully complete these steps since all CAD tools work in a similar way like the rectangle tool.

1. Launch QCAD if it is not already running. QCAD shows its application window and creates a new, empty drawing.
2. Before you start drawing anything, save this empty drawing to a file on your disk. To do so, choose the menu **File - Save As...** The dialog for saving a drawing is shown. The dialog automatically suggests a location for your file. This location is usually not a bad place to start with. You might want to use a sub-folder **drawings** in this location instead, but to keep things simple the following steps assume that you use this default location for saving your drawing.
3. Type the filename **example** into the input field with the label **File name**, then click the **Save** button to save the empty drawing. The dialog window closes and you are now ready to start drawing.

Although is is not necessary to first save the empty drawing, it is good practice to do so as it forces you to think about where you want to store the file before you start drawing.
4. Move your mouse cursor to the line button as shown in Figure 2-3 at the left (1). Click the left mouse button to show the line tools (2).
5. Click the button with a rectangle on it as shown in Figure 2-3 (2). QCAD now knows that you intend to draw a rectangle and shows the CAD toolbar with the snap tools.
6. Click the button with a grid on it as shown in Figure 2-3 (3). QCAD now knows that you intend to draw a rectangle and shows the CAD toolbar with the snap tools.
7. Move the mouse cursor around in the drawing area. There are two things to notice:
 - The mouse cursor has changed its shape and is now shown as a pair of cross hairs.
 - There is a small yellow circle that follows the mouse cursor around whenever you move it. This circle is not positioned exactly under the mouse cursor. It ‘snaps’ always to the grid point in the drawing area that is the closest to the mouse cursor.

This yellow circle indicates what position QCAD is currently working with. The exact position of the crosshair mouse cursor is irrelevant to QCAD as long as the
yellow circle is in the correct place. In the previous step you have chosen to use the grid for positioning (*Snap to grid*). QCAD is now automatically restricting the options for choosing a position to the grid points.

8. Click somewhere into the drawing area. A little red circle with a cross appears at the closest grid point as shown here:

![Image of a red circle with a cross at a grid point]

You have now set the first corner of the rectangle you are about to draw. If you move the mouse cursor around in the drawing area, you will see that QCAD draws a rectangle from the chosen position to the grid point that is closest to the mouse cursor as shown below:

![Image of a preview rectangle]

Note that this rectangle is not yet part of your drawing and keeps changing whenever you move the mouse. This is called a *preview*. QCAD uses these previews to show you what would be drawn if you would click the mouse button at this point.

9. Move the mouse cursor until the rectangle that is shown is three grid spacings wide and two grid spacings high. Your rectangle should look like that one in the figure above.

10. Click the left mouse button to set the second corner of the rectangle. This leaves you with a drawing that looks like this:

![Image of a completed rectangle]

The rectangle that is shown now, is a part of your drawing.

11. QCAD is ready to draw the next rectangle and waits for the first corner of the next rectangle. Since we don't want to draw more rectangles, we will terminate this tool now. To do so, click the right mouse button twice. If you don't have a right mouse button, press the *Escape* or *Esc* key on your keyboard twice. The mouse cursor is back to normal and the CAD toolbar shows the same tools as it did after starting QCAD. Your rectangle should still be visible. If that is not the case, you did something wrong and you need to carefully repeat the steps 4 to 10.

12. Save your drawing by choosing the menu *File - Save*.

In the example you have just completed, you have used a tool called *Snap to grid*. As a result, the corners of the rectangle are exactly aligned to the grid points. Snap tools are a central concept of any CAD system and there are many other snap tools you will get to know later in this book.

Hands-on: A Line through the Middle

To emphasize the importance of snap tools, we will now extend our drawing with a vertical line that separates the rectangle in two equal halves.
Vertical means that the line extends from a first point to another point directly under or above it. In our case, the line starts in the middle of the top line of the rectangle and ends in the middle of the bottom line. The top and bottom lines of the rectangle are **horizontal**, that means they extend from left to right. You can easily remember what **horizontal** means by thinking that the **horizon** at the seaside looks **horizontal**.

Note that there are no grid dots at the center of the top and the bottom line of the rectangle. For this line we will have to use a different snap tool.

1. Choose the **Line Tools** button again from the CAD toolbar as shown in Figure 2-4 (1).
2. This time, select the tool **Line from 2 Points** (2).
3. Click the button **Middle** (3). This activates the snap tool to snap to middle points of lines and arcs. Note that only one snap tool can be active at any time.
4. Move the mouse cursor around in the drawing area like we did before with the grid snap tool. As you can see, the yellow circle no longer jumps from grid point to grid point. Instead it now only shows up in four different positions which are the middle points of the four lines that form the rectangle. One such possibility is shown here:

![Figure 2-4: Choosing the CAD tool for drawing lines with two points and changing the snap tool to Snap to middle points.](image)

Try also to find the other three by moving the mouse cursor around.

5. Click the left mouse button while the mouse cursor is located somewhere close to the middle of the top line of the rectangle. It doesn't really matter where exactly the mouse cursor is, as long as the yellow circle is located in the middle of the top line as shown above.

After clicking the left mouse button, the drawing should look like shown below. The start point of the line is now set:

6. Move the mouse cursor approximately to the middle of the bottom line of the rectangle. You can see a preview of the vertical line we are about to draw.
7. Click the left mouse button to set the end point of the line. The drawing should now look like this:

![Drawing Example]

8. QCAD now waits for you to draw the next line or to terminate the tool. Click the right mouse button twice or press the Escape key on your keyboard twice to make sure the tool is terminated.

9. Save your drawing again by choosing the menu File - Save.

Hands-on: Printing a Drawing

Once your drawing is finished, you will most likely want to print it on paper. In the following steps we will print your drawing on an A4 or Letter size paper.

1. Activate the print preview by choosing the menu File - Print Preview. QCAD shows your drawing as it will be printed. Hit the minus key on your keyboard a couple of times to zoom out until you can see the paper border:

![Print Preview]

The white area shows the size and location of the paper. The toolbar at the top shows some tools and options for the print preview.

2. Print the drawing by choosing the menu File - Print. The printer dialog is shown. If your printer is set up correctly, it should not be necessary to make any adjustments here. Click OK to print your drawing.

3. Close the print preview by clicking the close button at the top left in the options toolbar:

![Close Print Preview]

4. Save your drawing by choosing the menu File - Save (QCAD will save the paper settings with your drawing).

5. You can close your drawing now. To do this, choose the menu File - Close.

Closing QCAD

If you want to continue right away with the next chapter you can keep QCAD running. If you want to finish for now, you might want to close the QCAD application. You can do this by choosing the menu File - Quit.
4. QCAD adds the new layer to the layer list. Later we will use this layer for all visible edges of the drawing.

5. In the same way, add the following layers with these names and attributes to the drawing:
 - This layer will later be used for hidden edges:
 - Layer name: hidden
 - 1. Color: Black
 - 2. Width: 0.25mm
 - 3. Line type: Dash
 - All center lines and symmetry lines will be placed on this layer:
 - Layer name: center
 - 1. Color: Red
 - 2. Width: 0.13mm
 - 3. Line type: Dash Dot

Drawing onto Layers

The layer list now shows the layers you have just added in addition to the layer 0. Before you are drawing something, you have to decide on which layer you want to draw. In the following steps you will draw some elements onto each layer.

The drawing we will produce is shown in Figure 4-4. It is the front view of a simple mechanical part. The instructions below will guide you through the complete process of creating the drawing in Figure 4-4. You will use the rectangle tool again, get to know the tool for drawing parallel lines and use two simple modification tools to finish the drawing.

![Figure 4-4](image)

Figure 4-4: The final drawing of this exercise.

1. Click on the layer name visible in the layer list. Make sure that you click on the name and not one of the icons beside it. The layer name is now highlighted:

![Layer List](image)

This indicates that layer visible is now the active layer. The active layer is the layer onto which you are currently drawing.

2. Choose the drawing tool for drawing a rectangle:

![Rectangle Tool](image)

3. Activate the grid snap:

![Grid Snap](image)

4. Adjust the scale of the drawing area so that you can see a space of about 100 units horizontally. To do this, keep an eye on the rulers that QCAD displays at the top and at the left. Check the bottom right corner of the drawing area to make sure that the grid is currently shown with a spacing of 10 units (the text 10 / 100 is shown).
5. Draw a rectangle that is 50 units wide and 20 units high using the grid. Set the first corner at any grid point in the drawing and set the second corner 5 grid points to the right and 2 grid points to the top of the first corner:

6. We will now create the vertical center line in the middle of the rectangle. We can use the parallel tool for that, but first we need to switch the active layer to *center*. Click on the layer *center* in the layer list to activate it:

7. Choose the drawing tool for drawing parallel lines:

8. The options toolbar for parallels is shown at the top. Enter 25 for Distance and make sure that *Number* is set to 1:

9. Move the mouse pointer close to the left side of the rectangle, just slightly to the right of it. QCAD gives you an immediate preview of where the parallel will be placed. This should look like this:

As soon as the parallel is shown at the right place, click the left mouse button to create it.

Note that the center line you have just created has the attributes of layer *center*. It should be displayed in red and with a dash-dot line pattern.

10. Activate the layer with name *hidden* and create the two hidden lines. The distance from the center line to each of the hidden lines is 4, so you need to change the distance in the options toolbar of the parallel tool to 4 and then create the lines as shown here:

11. The drawing is now almost finished. Center lines and symmetry lines are usually slightly extended to clearly separate them from the edges of the object. QCAD offers a modification tool to extend a line by a given amount. Start this tool by clicking the...
button to show the modification tools, followed by the button for the tool to lengthen entities:

12. Enter the amount 2.5 in the options toolbar:

QCAD will now lengthen every entity you click by an amount of 2.5 units. The element is extended at the end which is closer to the mouse cursor when you click the entity. To extend the center line by 2.5 units at the top end, click the center line close to its top:

13. Click the center line close to its bottom end to extend it in that direction as well:

Changing the Visibility of Layers

1. You can now easily view your drawing without invisible lines and without the center line by hiding the layers hidden and center. To change the visibility of layer hidden, click on the eye symbol next to its name in the layer list:

2. It is not necessary to activate a layer in order to change its visibility, so you can simply click the eye icon of layer center to hide it as well. The layer list indicates hidden layers with a gray eye icon:

3. After hiding the layers hidden and center, your drawing now only shows the layers 0 (which is empty) and layer visible:

4. Make sure that all layers are visible again by clicking the button to show all layers:
10. Make sure that the direction of the arc is set to counter-clockwise in the options toolbar:

11. Move the mouse cursor to the other end of the line at the left and click that endpoint to define the end angle of the arc:

The arc is now completely defined.

12. Terminate the arc tool by clicking the right mouse button twice or by clicking the selection pointer button in the toolbar:

13. Start the line tool as previously described and set the start point at the left endpoint of the horizontal line:

14. For this example, we want to place the end point at a distance of exactly 20 units along the arc line. There are some snap points that cannot be set with the auto snap tool. At the moment, we would like to snap to a point on the arc line with a distance of 20 units from the end point. For this, we use the snap tool called Distance from end point. This tool snaps to a point with a given distance from an end point. Click the Distance from end point snap tool in the CAD toolbar at the left:

The options toolbar at the top now shows a text field. Enter the distance from the end point to which you want to snap. For this example, enter 20:

15. Move the mouse cursor along the arc again. The mouse cursor now only snaps to two positions. One of them is at the right, 20 units away from the right endpoint of the arc:

The other one is at the left, 20 units away from the left endpoint of the arc:
Chapter 7

Coordinates

Objective
In this chapter, you will
• learn what coordinates are,
• get to know the different types of coordinates QCAD supports,
• learn how to define positions by entering coordinates.

The Cartesian Coordinate System
In the previous chapters you have already seen and used the drawing area of QCAD. Like a sheet of paper, the drawing area is a flat area onto which you can draw something.

When working with a CAD system, you will often be confronted with the coordinate system of the drawing area. A coordinate system uniquely defines each point in the drawing area and in your drawing. If you point with a pen to any position in the drawing area, that position has a unique coordinate that defines where this point is in the drawing.

By far the most commonly used coordinate system is the Cartesian coordinate system. A coordinate system is not something that is given by nature. Coordinate systems were defined once by someone (in this case René Descartes in 1637) to define a standard for specifying the position of a point on a two dimensional surface. The Cartesian coordinate system is not only used in CAD applications but in many areas of mathematics, physics and engineering.

The Cartesian coordinate system is based on two axes that are at right angles (orthogonal) to each other. The horizontal axis is commonly called the X-axis while the vertical one is called the Y-axis as shown in Figure 7-1.

![Figure 7-1: The coordinate axes of the Cartesian coordinate system.](image)

The origin of the coordinate system is the point where the X and the Y axes cross each other. This point is also referred to as the absolute zero point or just absolute zero.

The complete book is available for purchase from: http://www.qcad.org/shop
Both axes have a direction. The X-axis is directed to the right and the Y-axis upwards. This is not necessarily a logical choice, it was simply defined this way. As you can see in Figure 7-1, the axes are divided into smaller sections, each one unit long.

Any particular position can be described by its distance from the origin in X-direction and in Y-direction. For example the position of the point \(P \) in Figure 7-2 is 3 units away from the origin in X-direction and 2 units away from the origin in Y-direction. Or, to use the correct notation, the point \(P \) is located at \((3,2)\). This notation in brackets indicates the location of a point as a pair of an X-distance and a Y-distance \((X,Y)\).

![Figure 7-2: The location of the point \(P \) can be noted as \((3,2)\) where 3 is the distance to the origin in X-direction and 2 is the distance to the origin in Y-direction.](image)

If a point is located left of the origin, its X-coordinate turns negative. If it is located below the origin, its Y-coordinate turns negative. Figure 7-3 shows some points in the Cartesian coordinate system and their \((X,Y)\) notation. The \((X,Y)\) notation for the origin is \((0,0)\).

![Figure 7-3: Some example coordinates in the Cartesian coordinate system.](image)

There are different ways to specify the location of a point in the Cartesian coordinate system. The most common ones are: absolute, relative and polar coordinates.

Absolute Cartesian Coordinates

Absolute Cartesian coordinates indicate the position of a point by its distance to the origin along the X and Y axes. The coordinates used in previous examples are all absolute Cartesian coordinates.

Absolute Cartesian coordinates are usually noted as \((X,Y)\), for example \((6,4)\). Figure 7-4 shows an example for an absolute Cartesian coordinate.
Relative Cartesian Coordinates

Relative Cartesian coordinates relate to the last used position and not to the origin of the drawing.

There is no standard notation for relative coordinates. However, a common notation in the CAD industry is to prepend an AT sign (@) to a relative coordinate.

A relative Cartesian coordinate may for example be used to position the end point of a line relatively to its start point. Let’s assume you have just set the start point of a line at the absolute coordinate (2,2). You can now set the end point of the line at the relative coordinate (@5,3). The absolute coordinate of the end point will be at (7,5). In this example, the relative coordinate relates to the start point of the line (2,2). In other words, the values of the relative coordinate of the end point are added to the absolute coordinate of the start point: (2,2) + (@5,3) = (2+5,2+3) = (7,5).

In previous exercises you might have already noticed a small red circle that moves always to the previously clicked point when you draw lines. This red circle visualizes the position of the relative zero point of your drawing. When entering relative coordinates, they relate to the current position of this red circle. Figure 7-5 shows an example for a relative coordinate.

Absolute Polar Coordinates

Polar coordinates specify the position of a point by an angle and the distance to the origin (often called radius).

A common notation for absolute polar coordinates is (distance<angle), for example (8<30) for a point with a distance of 8 units from the origin at an angle of 30 degrees. Angles are always measured from the positive part of the X-axis. In other words, 0 degrees is east or 3 o’clock on your watch. Angles are measured counter-clockwise which is the mathematical and technical standard for indicating angles. Negative angles may be used for clockwise angles. Figure 7-6 shows an example for an absolute polar coordinate.
Relative Polar Coordinates

Just like Cartesian coordinates, polar coordinates can also refer to the relative zero point instead of the origin. In this case we talk about relative polar coordinates.

We use the notation (@distance<angle) for relative polar coordinates. Figure 7-7 shows an example for a relative polar coordinate.

Notes

Note that QCAD stores all coordinates as absolute Cartesian coordinates internally. So there is no difference in the end result if you use absolute or relative and Cartesian or polar coordinates. The different ways for specifying a position are only a help for you as a user to avoid having to calculate positions.

Hands-on: Drawing a Triangle from Three Absolute Coordinates

The following steps guide you through the process of drawing a triangle from the three coordinates of its corners. The goal is to draw the triangle shown in Figure 7-8.

1. Launch QCAD with a new, empty drawing and save it under the name coordinates01.dxf.

Figure 7-6: The absolute polar coordinate of point P is (8<30).

Figure 7-7: The relative polar coordinate of point P is (@5<30).

Figure 7-8: A triangle with known corner coordinates.
2. Click the position of the corner diagonally opposite of the first corner.
3. Terminate the tool by clicking the right mouse button or by hitting the Escape key on your keyboard.

Bisector

Menu: Draw - Line - Bisector
Keycode: LB

A bisector line is a line that divides the angle between two lines into two equal halves (Figure 8-7).

Figure 8-7: A bisector line divides the angle between two lines into two equal halves.

Usage

1. Enter the length of the line in the options toolbar.
2. Make sure that Number is set to 1.
3. Click the first line. This is one of the two lines that enclose the angle that will be divided into two equal parts by the bisector line.
4. Click the second line.
5. Terminate the tool by clicking the right mouse button or by hitting the Escape key on your keyboard.

The bisector tool can also be used to divide the angle between two lines into more than two equal parts. This behavior is controlled by the Number option in the toolbar. Table 8-2 shows some examples with different tool options.

<table>
<thead>
<tr>
<th>Table 8-2</th>
<th>Bisector Tool Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool options</td>
<td>Click points and constructed lines</td>
</tr>
</tbody>
</table>
| Length: 30
Number: 1 | ![Example 1](image1.png) |
| Length: 30
Number: 2 | ![Example 2](image2.png) |
Arc from Two Points and Radius

Menu: Draw - Arc - 2 Points and Radius
Keycode: AD

This is the first of two tools which can be used to draw an arc from its start point and end point. This tool also requires a radius to be input. Since there are four arcs possible, you also have to define the direction and choose between the shorter or longer of the possible arcs. Figure 8-16 shows the two points with the four possible solutions in gray and the chosen solution in black.

![Figure 8-16: Arc from two points and a radius.](image)

Usage

1. Click the start point of the arc.
2. Enter the arc radius and choose the arc direction (counterclockwise or clockwise) and which solution you want (shorter or larger arc):

 ![Arc radius and direction settings](image)

 For the example in Figure 8-16 the direction was chosen as counterclockwise and the solution.
3. Click the end point of the arc.
 If the end point is two times the radius away from the start point or more, a half circle is drawn with the given radius.
4. Terminate the tool by clicking the right mouse button or by hitting the Escape key on your keyboard.

Arc from Two Points and Angle

Menu: Draw - Arc - 2 Points and Angle
Keycode: A2

This is the second tool to draw an arc from its start point and end point. With this tool you can specify the angle that is covered by the arc and the arc direction. Figure 8-17 shows the two points with the four possible solutions in gray and the chosen solution in black.
3. Let go of the left mouse button. QCAD selects the entities completely inside the chosen area as well as those that are only partly inside the area:

![Selection Diagram]

The Shift key has the same effect for this selection tool as when picking single entities. If you press the Shift key while doing a rectangular selection, the selection is added to the current selection. Otherwise, the previous selection is replaced with the new one.

Advanced Selection Tools

In addition to the simple selection tools described so far, QCAD offers some more selection tools for advanced selection needs. Those more advanced selection tools can only be accessed through menu `Select` or through the selection tools button in the CAD toolbar at the left:

<table>
<thead>
<tr>
<th>Menu</th>
<th>Select</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keycode</td>
<td>WS</td>
</tr>
</tbody>
</table>

Figure 9-1 shows the CAD toolbar with the complete palette of selection tools.

![Advanced Selection Tools Palette]

Figure 9-1: The CAD toolbar showing the advanced selection tools.

Note that some of these tools are also available in the neutral mode of QCAD as basic selection tools as previously described.

Selection Modes

Some of the selection tools offer different selection modes. The selection mode that is chosen defines how the newly chosen selection affects the current selection. The default selection mode replaces the current selection with the new selection.

<table>
<thead>
<tr>
<th>Table 9-1</th>
<th>Selection modes for the rectangle selection tool and other selections tools.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Mode</td>
<td>Description</td>
</tr>
<tr>
<td>Replace</td>
<td>Replaces the current selection with the new selection. If used for example with the rectangle selection tool, all entities inside the rectangle are selected and everything else is deselected.</td>
</tr>
</tbody>
</table>

The complete book is available for purchase from: http://www.qcad.org/shop
Selection and Modification

<table>
<thead>
<tr>
<th>Selection Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>Adds all matching entities to the current selection. For the rectangle selection tool, all entities inside the rectangle are selected in addition to the entities that were already selected before using the tool.</td>
</tr>
<tr>
<td>Subtract</td>
<td>Subtracts all matching entities from the current selection. This turns for example the rectangle selection tool into a rectangle deselection tool. All entities inside the rectangular area are deselected. Entities outside the rectangle that were previously selected remain selected.</td>
</tr>
<tr>
<td>Intersect</td>
<td>Intersects the current selection with the new selection. After using the rectangle selection tool with this selection mode, only entities that were already selected and that are inside the rectangle are selected.</td>
</tr>
</tbody>
</table>

Deselecting Everything

Menu: Select - Deselect All
Keycode: TN

Click this button to clear any selections. Alternatively, you may want to simply click into an empty area of your drawing to deselect everything.

Selecting Everything

Menu: Select - Select All
Keycode: TA

Click this button to select all visible, editable entities of your drawing. Entities on layers that are hidden or locked are not selected by this tool. This prevents you from accidentally selecting and later modifying or deleting something you are not aware of because it is hidden.

Note that those entities which are on a visible, unlocked layer but are not within the currently visible area of the screen are also selected with this tool.

Inverting Selection

Menu: Select - Invert Selection
Keycode: TI

With this tool you can quickly invert the current selection. The tool selects all not selected entities and deselects all selected entities. This is especially useful if you need to modify almost your entire drawing, except a few entities. In this case you might want to select the entities which should remain the same and then invert the selection with this tool.

Selecting Rectangular Areas

Menu: Select - (De-)Select Rectangular Area
Keycode: TR

This is an alternative tool for selecting and deselecting entities inside a rectangular area. This tool is similar like the basic window selection tool described in the previous section. The advantage of this tool is that you may choose a selection mode in the options tool bar. Table 9-1 shows what the different selection modes do.
Cut and Copy with Reference Point

Menu: Edit - Cut with Reference
Keycodes: RT, Ctrl-Shift-X (Mac: ⌘⇧X)

Menu: Edit - Copy with Reference
Keycodes: RC, Ctrl-Shift-C (Mac: ⌘⇧C)

Figure 9-5 shows the side view of the previous example drawing with the chair and the table. Again, we want to move the chair closer to the table using cut and paste. This time it is important that the pasted chair is aligned at the bottom with the table. Using the center of the chair as reference point might not be convenient in this situation.

![Diagram of chair and table](image)

Figure 9-5: To place the chair at an exact position, the tool *Cut with Reference* can be used.

Usage

1. Select the entities you want to cut or copy.
 In the example, that is the side view of the chair:

![Diagram showing selected entities](image)

2. Choose the tool "Copy with reference":

![Copy with reference icon](image)

or the tool *Cut with Reference*:

![Cut with reference icon](image)

Since we want to remove the original chair in this example, we choose the tool *Cut with Reference*.
3. QCAD now asks you to specify the reference point. Click a point in the drawing to use as reference point. This can be any point but is typically a significant point within the selection or a grid point.
 For our example, we choose the corner point at the lowest right edge of the chair:

 ![Reference Point Example](image1)

4. As soon as you have chosen the reference point, the original entities are removed from the drawing and stored on the clipboard:

 ![Clipboard Contents](image2)

5. You can now use the paste tool to paste the clipboard contents. Note that there is only one paste tool which always requires you to position the pasted entities:

 ![Paste Tool Example](image3)

6. Make sure that the options in the options tool bar are reset to a rotation angle of 0, a scale of 1 and that the mirror buttons are not activated. To quickly reset all values, click the reset button at the right of the options toolbar:

 ![Reset Options Example](image4)

7. Click the left mouse button to place the entities. The entities can now be positioned by the previously chosen reference point.
 For this example, this means that you can position the chair to be exactly aligned with the bottom of the table by clicking one of the grid points on the same height as the ground level:

 ![Chair Placement Example](image5)

8. We can continue to place another copy of the chair at the other side of the table.
 Click the vertical flip button in the options toolbar to mirror the chair horizontally:
4. Click the center for the secondary rotation. This is usually at the center of the small part that is rotated around the center point for the primary rotation. In this example, we choose the center of the elongated hole:

![Diagram of rotation](image)

5. QCAD shows the dialog with the options for this tool:

For our example we want to create 7 copies. The main rotation angle a is 45 degrees and the secondary rotation angle b is -45 degrees. The secondary angle b usually has the same value as the main rotation angle a, but with the opposite sign. This keeps the rotated selection exactly straight.

6. Click OK.
7. QCAD creates the rotated copies with the specified rotation angles. The finished example looks like this:

![Finished example](image)

Trimming Entities

<table>
<thead>
<tr>
<th>Menu:</th>
<th>Modify - Trim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keycode:</td>
<td>RM</td>
</tr>
</tbody>
</table>

The trim tool provides a way to trim an entity to meet another entity. The entity is shortened or extended in such a way that the end point exactly touches the other entity.

For example in the drawing shown in Figure 9-10 we can trim the upper one of the horizontal lines to the skewed line to form an L-shape.
Figure 9-10: With the trim tool, the upper one of the horizontal lines at the left can be shortened in a way that the end point is exactly on the skewed line as shown at the right.

Note that this tool does not operate on a previously made selection. Any existing selection is ignored.

Usage

1. Start the trim tool:

2. Pick first the limiting entity. This entity will not be changed in any way but it defines the position to which the other entity should be trimmed.
 For the example drawing, we choose the skewed line to which we want to trim the horizontal line:

3. Click the entity you want to trim. Note that it is significant where you click the entity. Click the entity on that part which you want to keep, not the part you want to trim away when shortening an entity.
 In this example, we choose the horizontal line somewhere at the right of the intersection point between the limiting line and the line that has to be trimmed:

4. QCAD trims the horizontal line to meet exactly with the skewed line:

Table 9-3 shows more examples for trim operations. Pay special attention to the relevance of the click points.

<table>
<thead>
<tr>
<th>Table 9-3</th>
<th>Trimming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choosing the limiting entity</td>
<td>Choosing the trim entity(ies)</td>
</tr>
<tr>
<td>Extending a line to another line.</td>
<td></td>
</tr>
</tbody>
</table>

126

The complete book is available for purchase from: http://www.qcad.org/shop
Part III

Drawing and Editing with QCAD

Choosing the limiting entity	Choosing the trim entity(ies)	Result after trimming
Shortening a line to another line. Note how the click point used when choosing the entity to trim defines which part of the line is kept and which one is trimmed. The part you click on is always the part you want to keep. Here that is the left part.

Here the right part is clicked and kept.

Trimming a line to an arc.

The click point when choosing the limiting entity can also be relevant since there are two possibilities how an arc can limit the trimming of a line.

Trimming a circle to a line. Because a circle has no end points, the circle is changed into an arc and both arc end points are trimmed to the limiting entity. Here, the top part of the circle is meant to stay and the bottom part to be trimmed (removed).

In this example, an arc is created from the bottom part of the circle. The top part is removed.

This example shows how multiple entities can be trimmed to the same limiting entity. Simply click the limiting entity and then click all entities to trim to it.
2. Start the alignment tool:

3. In the options toolbar, choose if you want to align the selection to the document boundaries or to a picked entity.
 You can also choose the vertical and horizontal alignment and if you want to treat the selected entities as one group or as individual entities to be aligned:

Table 9-5 shows the effect of the alignment tool if Selection as group is on or off. The selected entities are treated as one object that is aligned to the rectangular polyline if the option is on. Without treating the selection as group, each individual of the selected entities is aligned to the rectangular polyline.

4. If you chose to align the selection to the document boundaries, click the green tick to confirm the alignment operation.
 If you chose to pick an entity to align to, click that entity now (the rectangular polyline in our example).

<table>
<thead>
<tr>
<th>Horizontal Alignment</th>
<th>Vertical Alignment</th>
<th>Selection as group: on</th>
<th>Selection as group: off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>None</td>
<td>🔄</td>
<td>🔄</td>
</tr>
<tr>
<td>None</td>
<td>Top</td>
<td>🔄</td>
<td>🔄</td>
</tr>
<tr>
<td>Center</td>
<td>Center</td>
<td>🔄</td>
<td>🔄</td>
</tr>
<tr>
<td>Right</td>
<td>Bottom</td>
<td>🔄</td>
<td>🔄</td>
</tr>
</tbody>
</table>
Creating Text Entities

Menu: Draw - Text
Keycode: TE

To create a new text entity, click the text tool button in the CAD toolbar.

Usage

1. The text dialog of QCAD is the starting point to create new text entities:

 ![Text dialog screenshot]

 - Choose a font for the text entity. There are two types of fonts available in QCAD:
 - **CAD fonts** with letters that consist of lines and arcs. They are shown at the top of the font list. If you are creating a text using a CAD font, the font *standard* is usually a good choice:

 Sample text in CAD font 'Standard'

 - **System wide fonts** are shown below the CAD fonts. These fonts create texts in which the letters are displayed as filled areas rather than lines and arcs. If you are planning to share your drawing, keep in mind that other users might not have the same fonts installed on their systems as you. The font ‘Arial’ is usually a safe choice for a system font as it is available on most systems:

 Sample text in font 'Arial'

2. Choose a font for the text entity.

3. Enter the height of your text by following the notes about drawing scale above. Texts that are too small on paper (smaller than about 2.5mm) are hardly readable while large texts might get in the way of the actual drawing elements.

 The text height is measured from the bottom line of the text to the top of a capital letter. The height that is chosen is the initial height for your text entity. You may also change the text height anywhere in the text using the text editor at the right.

4. Check the **Bold** or **Italic** choices to make your text bold or italic. These settings are default settings for your text. You may also change the style inline using the text editor at the right.

5. Make sure that the **Line spacing factor** is set to 1. The line spacing factor does not need to be changed in most cases.

Angle Dimension

Menu: Dimension - Angular
Keycode: DN

The angle dimension tool dimensions an angle in degrees or an alternative angle unit. The angle is defined by either two lines in the drawing or an arc.

![Angle Dimension Diagram](image)

Figure 13-13: Angle dimensions indicate the angle between two lines or the angle of an arc.

Usage

1. Click the first line that limits the angle or click an arc for which you want to dimension the angle.

 In this example, we click the horizontal center line of the drawing:

 ![Click on Horizontal Line](image)

2. If you have clicked a line in the previous step, you can now pick another line.

 We pick the other center line for this case:

 ![Click on Second Line](image)

 If you have picked an arc in the first step, this step does not apply since an arc defines the start angle and the end angle for the angle dimension.

3. Click the position of the dimension line.
Moving the Text Label

QCAD automatically positions the label of dimensions. Sometimes QCAD places the label in a position where it overlaps with other parts of the drawing (for example as shown in Figure 13-17). In such cases, you can manually move the label to another position.

1. Make sure that no tool is active and QCAD is in its neutral state.
2. Select the dimension entity for which you want to move the label by clicking on it. QCAD highlights that entity and shows its reference points as blue spots:

 ![Figure 13-17](image)

3. Move the mouse cursor to the blue spot that is at the center of the text label:

 ![Figure 13-17](image)

4. Press the left mouse button and hold it down.
5. Move the mouse cursor until it turns into a crosshair.
6. Let go of the left mouse button.

Text string for dimension label and explanation

<table>
<thead>
<tr>
<th>Text string for dimension label and explanation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text string: (G7{\pm 0.028} + 0.007;)</td>
<td></td>
</tr>
<tr>
<td>To have a text after a subscript or superscript (here a closing bracket), the text sequence for subscripts and superscripts can be used instead of the tolerance input fields.</td>
<td></td>
</tr>
<tr>
<td>Text string: (\pm 0^\circ 0' 30")</td>
<td></td>
</tr>
<tr>
<td>Custom label example with an angle dimension.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 13-17: In situations like this, the dimension text label can be repositioned manually.
For better understanding of the drawing in Figure 14-4, Figure 14-5 shows an isometric drawing of the same mechanical part.

The following instructions guide you through the process of isolating the hatch boundary. This is not the only way how this can be done. The goal is to have the complete, closed hatch boundary on a separate layer, so it can be easily selected and later hidden or deleted when it is not needed anymore.

1. Create a new layer for the hatch boundary.
 For this example, we call the layer *hatch boundary*. The layer attributes don't matter, you can just leave the default attributes on.

2. Select all entities that are or might be part of the hatch boundary. At this point it does not matter if you select too many entities. If your drawing is not very large, you can also simply select the whole drawing.
 For our example, we select the complete cross section:
Figure 15-4: Blocks are very useful for symbols in schematics like this.

1. First, the symbol can be constructed with the normal drawing and modification tools of QCAD.
 For this example, we assume that the drawing has been started with the entities shown here:

2. Select the entities that make up the new block.
 In the example, we select all entities of the symbol that represents a pneumatic three-port valve:

3. Click the tool button in the CAD toolbar to create a block from selected entities:

4. Click a reference point for the block. This point should be a significant point of the block. It will be used later when positioning references of that block.
 In our example, we use the left bottom corner as reference point:

5. QCAD shows a dialog to enter a name for the block. Enter a unique name that helps you to later identify the block.
 For this example block, we enter Valve:
Index

Symbols
@ 52

A
Absolute Cartesian coordinates 51
Absolute polar coordinates 52
Absolute zero point 50
Accuracy 11
 definition 39
 vs. precision 39
Add layer 34
Add node 91
Advanced modification tools 114
Align 140
Aligned dimension 157
Angle
 direction 52
 measuring 147
Angle between lines 147
Angle dimension 166
Append node 92
Application window 16
Arc
 3 points 77
 center, point, angles 75
 concentric 78,78
 offset 78
 tangential 79
 two points and angle 76
 two points and radius 76
Arc tools 74
Architectural 157
Architectural ticks 156
Area
 measuring 148
Arrowheads 155,155
Attributes 34,38
Auto zoom 28
Automatic Zoom
 after loading 26
Automation 11
Autosnap 42
Auxiliary lines 12
Axes 50

B
B-Splines 86
Bamboo 10
Basic modification tools 106
Bevel 131
Bézier splines 86
Bisector 66
Bitmap export 201
Bitmaps 198
Block
 break up 190
 change 188
 creation 184
 delete 190
 edit 188
 explode 190
 inserting 186
 list 184
 modify 188
 remove 190
 Block Insert 182
 Block Library 191
 Block List 184
 Block Reference 182
 Blocks 31,182
 BMP
 export 201
 import 198
 Boundary of a hatch 175
 Break out segment 135
 Break up 137
 Break up block reference 190
 Break up reference 190

C
CAD
 generic CAD 8
 in general 8
 vs. manual drafting 10
 CAD toolbar 19
 drawing tools 62
 Cartesian coordinate system 50
 Cartesian coordinates 51
 Chamfer 131
 Change block 188
 Circle
 3 points 83
 center, point 81
 center, radius 81
 concentric 83,84
 offset 84
 two opposite points 82
 two points and radius 81
 Circle tools 80
 Circumference
 measuring 148
 Clockwise 52
 Closed shape
 selection of 103
 Closing QCAD 24
 Color 34
 Command line
 hiding of 18
 Concentric 78,84
 Construction 62
 Construction lines 12
 Contour
 selection of 103
 Control points 86
 Coordinate entry 40
 Coordinate system 50
 absolute Cartesian coordinates 51
 absolute polar coordinates 52
Index

absolute zero 50
angle 52
axes 50
Cartesian coordinates 51
negative coordinates 51
origin 50
polar coordinates 52,53
relative Cartesian coordinates 52
relative polar coordinates 53
relative zero point 52,53
Coordinates 50
Copy 106,115
Copy and rotate 121
Correcting mistakes 20
Counter-clockwise 52
Creating Block 184
Creating drawing objects 62
Cut 106,134
Cut segment 135

D

Decimal 157
Degree
 of spline 86
Degrees 52
Delete 106
 polyline nodes 92
 polyline segments 93
Delete block 190
Delete small entities 139
Deselect
 area 102,103
 closed shape 103
 connected entities 103
 contour 103
 intersected 104
 layer 105
 polygon 103
 polygonal area 103
 rectangular area 102
 window 102
Deselect all 102
Deselect everything 102
Detect zero length entities 139
Diameter dimension 165
Diameter symbol 167
Dimension
 aligned 157
 angle 166
 architectural 157
 architectural ticks 156
 arrowheads 155
 arrows 156
 custom text 167
 decimal 157
 diameter 165
 diameter symbol 167
 dimension line 155
 drawing of 157
 engineering 157
 extension lines 156
 fixed text label 167
 format 157
fractional 157
horizontal 160
label 155
leader 162
linear 159
moving reference points 171
moving text label 170
option toolbar 167
ordinate 161
precision 157
preferences 156,157
prefix 167
radius 164
symbols 168
text 155,167
tolerances 168
tools 157
vertical 160
Dimensions 154
 and precision 11
 arrowheads 155
 parts of 155
 text 155
Direction of angles 52
Distance
 measuring 146,147
Distance between points 146
Distance to entity 147
Divide 134
Divide 2 135
Draw
 arc 74
 circle 80
dimension 154
 ellipse 84,85
 ellipse arc 86
 line 21,22,63
 polyline 89,90
 spline 86
Drawing
 area 50
 preparations 62
Drawing area 17
Drawing preferences
 dimension settings 156
Drawing scale 11
Drawing tools 62
Duplicate entities 139
DXF export 204

E

Edit
 bevel 131
 break out segment 135
 break up 137
 bring to front 138
 chamfer 131
 copy 106,115
 copy and rotate 121
 cut 106,134
 cut segment 135
 delete 106
divide 134
Index

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>divide</td>
<td>135</td>
</tr>
<tr>
<td>explode</td>
<td>137</td>
</tr>
<tr>
<td>fillet</td>
<td>133</td>
</tr>
<tr>
<td>flip</td>
<td>120</td>
</tr>
<tr>
<td>lengthen</td>
<td>128</td>
</tr>
<tr>
<td>mirror</td>
<td>120</td>
</tr>
<tr>
<td>move</td>
<td>113</td>
</tr>
<tr>
<td>move and rotate</td>
<td>121</td>
</tr>
<tr>
<td>move object grip</td>
<td>111</td>
</tr>
<tr>
<td>move object handle</td>
<td>111</td>
</tr>
<tr>
<td>move reference point</td>
<td>111</td>
</tr>
<tr>
<td>paste</td>
<td>106</td>
</tr>
<tr>
<td>polar duplicate</td>
<td>123</td>
</tr>
<tr>
<td>redo</td>
<td>20</td>
</tr>
<tr>
<td>remove</td>
<td>106</td>
</tr>
<tr>
<td>reset</td>
<td>20</td>
</tr>
<tr>
<td>rotate</td>
<td>117</td>
</tr>
<tr>
<td>rotate and counter-rotate</td>
<td>123</td>
</tr>
<tr>
<td>rounding</td>
<td>133</td>
</tr>
<tr>
<td>scale</td>
<td>118</td>
</tr>
<tr>
<td>send to back</td>
<td>138</td>
</tr>
<tr>
<td>split</td>
<td>137</td>
</tr>
<tr>
<td>stretching</td>
<td>130</td>
</tr>
<tr>
<td>text</td>
<td>138</td>
</tr>
<tr>
<td>translate</td>
<td>115</td>
</tr>
<tr>
<td>translate and rotate</td>
<td>121</td>
</tr>
<tr>
<td>trim</td>
<td>125</td>
</tr>
<tr>
<td>trim both</td>
<td>128</td>
</tr>
<tr>
<td>undo</td>
<td>20</td>
</tr>
<tr>
<td>Edit block</td>
<td>188</td>
</tr>
<tr>
<td>Editing</td>
<td></td>
</tr>
<tr>
<td>advanced</td>
<td>114</td>
</tr>
<tr>
<td>basic</td>
<td>106</td>
</tr>
<tr>
<td>Efficiency</td>
<td>12</td>
</tr>
<tr>
<td>Ellipse</td>
<td>85</td>
</tr>
<tr>
<td>Ellipse arc</td>
<td>86</td>
</tr>
<tr>
<td>Ellipse tools</td>
<td>84</td>
</tr>
<tr>
<td>Engineering</td>
<td>157</td>
</tr>
<tr>
<td>Equal parts</td>
<td>137</td>
</tr>
<tr>
<td>equidistant polyline</td>
<td>94</td>
</tr>
<tr>
<td>Escape</td>
<td>21</td>
</tr>
<tr>
<td>explode</td>
<td>137</td>
</tr>
<tr>
<td>explode block reference</td>
<td>190</td>
</tr>
<tr>
<td>explode reference</td>
<td>190</td>
</tr>
<tr>
<td>export</td>
<td>201</td>
</tr>
<tr>
<td>bitmaps</td>
<td>201</td>
</tr>
<tr>
<td>BMP</td>
<td>201</td>
</tr>
<tr>
<td>DXF</td>
<td>204</td>
</tr>
<tr>
<td>JPEG</td>
<td>201</td>
</tr>
<tr>
<td>PDF</td>
<td>203</td>
</tr>
<tr>
<td>PNG</td>
<td>201</td>
</tr>
<tr>
<td>SVG</td>
<td>203</td>
</tr>
<tr>
<td>extend</td>
<td>125,128</td>
</tr>
<tr>
<td>extension lines</td>
<td>155</td>
</tr>
<tr>
<td>Fillet</td>
<td>133</td>
</tr>
<tr>
<td>fit points</td>
<td>86</td>
</tr>
<tr>
<td>flip</td>
<td>120</td>
</tr>
<tr>
<td>format of dimension text</td>
<td>157</td>
</tr>
<tr>
<td>fractional</td>
<td>157</td>
</tr>
<tr>
<td>Freehand line</td>
<td>74</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIF</td>
<td>198</td>
</tr>
<tr>
<td>import</td>
<td></td>
</tr>
<tr>
<td>Graphics tablet</td>
<td>10</td>
</tr>
<tr>
<td>Grid</td>
<td>21</td>
</tr>
<tr>
<td>dots</td>
<td>17</td>
</tr>
<tr>
<td>Grips</td>
<td>111</td>
</tr>
<tr>
<td>of dimensions</td>
<td>171</td>
</tr>
<tr>
<td>groups</td>
<td>31,182</td>
</tr>
<tr>
<td>GUI</td>
<td>17</td>
</tr>
<tr>
<td>application window</td>
<td>16</td>
</tr>
</tbody>
</table>

H

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>handles</td>
<td>111</td>
</tr>
<tr>
<td>of dimensions</td>
<td>171</td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>mouse</td>
<td>10</td>
</tr>
<tr>
<td>requirements</td>
<td>10</td>
</tr>
<tr>
<td>screen</td>
<td>10</td>
</tr>
<tr>
<td>Hatch</td>
<td></td>
</tr>
<tr>
<td>tool</td>
<td>175</td>
</tr>
<tr>
<td>Hatches</td>
<td>174</td>
</tr>
<tr>
<td>boundary</td>
<td>175</td>
</tr>
<tr>
<td>creation</td>
<td>175</td>
</tr>
<tr>
<td>horizontal</td>
<td>160</td>
</tr>
</tbody>
</table>

I

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Images</td>
<td>198</td>
</tr>
<tr>
<td>Import</td>
<td></td>
</tr>
<tr>
<td>bitmaps</td>
<td>198</td>
</tr>
<tr>
<td>Info</td>
<td>146</td>
</tr>
<tr>
<td>angle</td>
<td>147</td>
</tr>
<tr>
<td>circumference</td>
<td>148</td>
</tr>
<tr>
<td>distance</td>
<td>146,147</td>
</tr>
<tr>
<td>length</td>
<td>147</td>
</tr>
<tr>
<td>total length</td>
<td>147</td>
</tr>
<tr>
<td>Insert</td>
<td>182</td>
</tr>
<tr>
<td>Insert block</td>
<td>186</td>
</tr>
<tr>
<td>Introduction</td>
<td>8</td>
</tr>
<tr>
<td>Invert selection</td>
<td>102</td>
</tr>
</tbody>
</table>

J

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG</td>
<td></td>
</tr>
<tr>
<td>export</td>
<td>201</td>
</tr>
<tr>
<td>import</td>
<td>198</td>
</tr>
</tbody>
</table>

The complete book is available for purchase from: http://www.qcad.org/shop
Index

K
Knots 86

L
Label of dimensions 155
Layer
 add 34
 attributes 34, 38
 color 34
 line type 34
 name 34
 select 105
 width 34
Layer attributes 38
Layer list
 hiding of 18
Layer selection 105
Layers 31
 preparing 62
Leader 162
Length
 measuring 147
Lengthen 128
Line
 auxiliary 12
 bisector 66
 freehand 74
 from two points 63
 horizontal 65
 offset 67, 68
 orthogonal 70
 parallel 67, 68
 polygon 72, 73
 rectangle 21, 65
 relative angle 71
 tangent 68, 69
 tools 21
 vertical 65
 with angle 64
 with two points 22
Line tools 63
Line type 34
Line types 33
Linear dimension 159

M
Mac OS X
 mouse 10
Manual drafting 10
Measuring
 angle 147
 area 148
 circumference 148
 distance 146, 147
 length 147
 total length 147
Measuring tools 146
Menu
 usage 18
Middle mouse button 28
Mirror 120
Mistakes
 correction of 20
Model
 scale 11
Modification 96
 CAD vs. manual drafting 10
 properties 142
Modification tools
 advanced 114
 basic 106
Modify 106, 114
 align 140
 bevel 131
 break out segment 135
 break up 137
 bring to front 138
 chamfer 131
 copy 115
 copy and rotate 121
 cut 134
 cut segment 135
 delete 106
Detect Duplicates 139
Detect Zero-Length Entities 139
divide 134
divide 2 135
explode 137
fillet 133
flip 120
lengthen 128
mirror 120
move 113, 115
move and rotate 121
polar duplicate 123
remove 106
reverse 138
rotate 117
rotate and counter-rotate 123
rounding 133
scale 118
send to back 138
split 137
stretching 130
text 138
translate 115
translate and rotate 121
trim 125
trim both 128
Modify block 188
Mouse 10
 middle button 28
Mouse cursor 21
Mouse wheel 10, 26
Move 113, 115
Move and rotate 121

N
Negative coordinates 51
Neutral state 20
Index

NURBS 86

O

Object grips 111
of dimensions 171
Object handles 111
of dimensions 171
Object snap 41
Offset
arc 78
circle 84
line 67,68
Offset polyline 94
Oops 20
Open drawing 26
Ordinate dimension 161
Origin 50
Orthogonal 70

P

Pan zoom 28
Panning 28
Parallel 67,68
Part library 191
Paste 106
PDF export 203
Pen 10
Photographs 198
Planning 13
PNG
export 201
import 198
Polar coordinates 52,53
Polar duplicate 123
Polygon 72,73
Polyline
add node 91
append node 92
delete node 92
delete segments 93
draw 90
equidistant 94
from segments 91
offset 94
trim segments 94
Polyline tools 89
Precision 11,39
angle entry 39
coordinate entry 39
definition 39
distance entry 39
factor entry 39
snap tools 39
techniques 39
vs. accuracy 39
Prefix 167
Preparations
before drawing 62
Prerequisites 9
Preview 21

Q

QCAD
application window 16
download 10
getting QCAD 10
web site 10

R

Radius dimension 164
Raster files 198
Rectangle 21,65
Red circle 52
Redo 20
Reference 182
Reference points 111
of dimensions 171
Relative Cartesian coordinates 52
Relative polar coordinates 53
Relative zero point 52,53
Remove block 190
Repetitive work 11
Requirements 10
Reset 20
Reverse 138
Right mouse button 21
Rotate 117
Rotate and counter-rotate 123
Rotational symmetry 11
Rounding 133

S

Save 21
Save as 21
Scale 118
of a drawing 11
printing 11
proportional 118
Scripting
automation with 11
Scroll bars 28
Select
area 102,103
closed shape 103
connected entities 103
contour 103
deselect all 102
deselect everything 102
intersected 104
invert selection 102
layer 105
polygon 103
polygonal area 103
rectangular area 102

Printing 24,206
Properties 142
Property editor 142
Proportional scaling 118

The complete book is available for purchase from: http://www.qcad.org/shop
select all 102
select everything 102
window 102
Select invert 102
Selection 96,98
advanced 101
in neutral state 98
Selection tools 98
Shorten 125,128
Snap
 auto 42
center 42
distance 42
end 42
free 42
grid 21,42
intersection 42
middle 22,42
on entity 42
orthogonal 42
perpendicular 42
reference 42
Snap tools 22,40
Snap Tools 41
Solid Fills 174
Spline tools 86
Split into equal parts 137
Stretching 130
Styles 33
SVG
 import 198
SVG Exports 203
Symbol library 191
Symbols 167

T
Tablet 10
Tangent 68,69
Target audience 8
Terminate tool 21
Text
 edit 138
Text of dimensions 155
Texts 149
Ticks 156
TIFF
 import 198
Tolerances 168
Toolbar
 lines 21
Toolbars
 CAD 19
Tools
 arcs 74
circles 80
ellipses 84
lines 63
modification 106,114
polylines 89
splines 86
Tooltips 19
Total length 147
Trim 125
polyline segments 94
Trim Both 128
Trim Two 128

U
Undo 20
User interface
drawing area 17
menus 18

V
Vertical dimension 160
View
 auto zoom 28
 pan zoom 28
 window zoom 29
 zoom in 26
 zoom out 26

W
Wacom 10
Width 34
Window
 application window 16
 Window zoom 29

X
X-axis 50

Y
Y-axis 50

Z
Zero point
 relative 52
Zoom factor 28
Zoom in 26
Zoom out 26
Zooming 26